
Scalable BIBOP garbage collection for parallel functional programson multi-core machines: preprint banner

Scalable BIBOP garbage collection for parallel functional
programs on multi-core machines

Luca Saiu
Laboratoire d’Informatique de l’Université Paris Nord – UMR 7030
99, avenue Jean-Baptiste Clément - F-93430 Villetaneuse – France

saiu@lipn.univ-paris13.fr

Abstract
Exploiting modern multi-core processors requires task-parallel pro-
grams which are simply too hard to implement with traditional
techniques; as high-level languages rely on automatic memory
management subsystems, such subsystems must be made fast and
scalable, tuned for today’s complex memory architectures.

In this paper we describe our implementation of a new parallel
non-moving garbage collector for shared-memory machines, based
on a variant of the BIBOP organization. Building on the experience
of Boehm’s work and revisiting some older ideas in the light of cur-
rent hardware performance trends, we propose a design leading to
compact data representation and measurable speedups, particularly
in the context of functional programs.

While discussing in detail the performance-critical sections of
the implementation we provide an intuitive justification for our
choices which we then corroborate with measurements.

This effort results in a particularly clean architecture based on
just a few data structures, which lends itself to experimentation with
alternative techniques.

Categories and Subject Descriptors D.3.4 [Processors]: Mem-
ory management (garbage collection); D.4.2 [Storage Manage-
ment]: Garbage collection; D.1.1 [Applicative (Functional) Pro-
gramming]

General Terms Design, Performance

1. Introduction
In recent years improvements in processor performance have been
due more and more to increased parallelism, while the trend of
rising processor clock frequency has dramatically slowed down.
In contrast to what happens with instruction-level parallelism, the
task parallelism offered by modern multi-cores must be explicitly
exploited by the software, ifanyspeedup is to be obtained [27].

Facing the inherent complexity of parallel programming, high-
level languages and tools now become an absolute necessity. In this
work we concentrate on memory management, the most complex
part of a programming language runtime.

[Copyright notice will appear here once ’preprint’ option is removed.]

As multi-core architectures support a shared-memory model1

the techniques presented here extend from the now ubiquitous
desktop multi-core machines to the older multi-socket SMPs, and
to most recent medium-size parallel machines containing several
multi-core CPU dies.

The architecture we illustrate here is also suitable for sequential
machine, but the need for such a software is particularly stringent
in a parallel context. In a sense the rise of the number of CPUs
amplifiesthe memory wall problem: the memory bandwidth is a
limited hardware resource which all cores have to share, and raising
the parallelism degree inevitably tightens up the bottleneck, even
without any synchronization.

1.1 Motivations

While planning a new implementation of our functional program-
ming language, GNUepsilon2 , we looked for a free software par-
allel garbage collector; Boehm’s conservative-pointer-finding col-
lector [7] was the obvious choice, and essentially the only one: see
Section12 for a short discussion of the available alternatives.
Despite its ease of use and good speed we felt that it was possi-
ble to obtain better performance and scalability than offered by
Boehm’s collector with relatively little effort, particularly in the
context of a functional language; some tests withnanolisp, a sim-
ple implementation of Lisp that we initially wrote as a prototype of
epsilon’s runtime, confirmed this intuition.

1.2 Objectives

Boehm’s garbage collector is the natural point of comparison for
our work because of several design similarities, including the idea
of (partially) conservative pointer finding, and the use of Unix

1 The architecture shown here does not generalize so well to NUMA ma-
chines, more suitable as they are to a message-passing style where each
task runs in its own addressing space; message-passing is also interesting,
as the same interfaces could scale up to parallel computationover the net-
work.
Moving away from thread parallelism to pureprocessparallelism (one
heap per process) would essentially eliminate the problem ofparallel non-
distributed garbage collection, but such a revolution appears unlikely. Other
organizations like NUMA machines composed by SMP nodes, or machines
where the NUMA effect is pronounced only between “distant” nodes, look
more realistic and are already being adopted by some current high-class ma-
chines [12]. For such a hybrid SMP-in-NUMA model the techniques shown
here apply at the SMP level, just in the same way as they would apply to
each single machine in a cluster of SMPs.
2 epsilon[22] is a mostly functional language, officially part of the GNU
Project [16]. It will be released as free software under the GNU General
Public License. The new implementation, our fourth rewrite, will have
essentially nothing in common with the previous ones and will be explicitly
targeted to parallel machines.

Scalable BIBOP garbage collection for parallel functional programs on multi-core machines: preprint footer 1 2011/6/14

signals to interrupt mutators3. For this reason it may be worth to
quickly highlight the main objectives we have set forth for our
implementation, in order to better explain the need for our effort
and to illustrate key similarities and differences. Our objectives
also more or less dictate several design and implementation choices
which we prefer to make explicit from the beginning.

First of all, C is clearly the language providing the best control
on performance for such a low level implementation where each
memory access matters. A slightly less obvious choice is deter-
mined by the typical usage ofparallel systems, tending to concen-
trate on bulk processing rather than interactive applications: for this
reason we considerbandwidth, and not latency, to be a priority; this
choice excludes most incremental schemes (but see Section10),
and favors astop-the-worldmodel where many threads can mutate
in parallel or collect in parallel, but without any time overlap be-
tween the two phases — all which is similar to Boehm’s solution.
Sinceepsilon is a functional language and functional programs
allocate a large number of small objects it is paramount to make a
good use of the limited space in the primary and secondary caches
(henceforth simplyL1 andL2), by tightly packing objects together:
we want to avoid padding space between heap objects and not to
force alignment constraints not specified by the user. Anyway, even
if functional programs are our first concern, we would like our col-
lector to be also useful for (human-written) C programs, which en-
courages us to adopt a non-moving strategy likemark-sweepand to
avoid safe-points and useconservative pointer findingfor roots; on
the other hand there is no reason why other heap objects should not
be traced exactly. The collector API should be usable by humans,
but not necessarily similar tomalloc() — an important difference
with respect to Boehm’s collector. In the same spirit of generality,
our implementation should be usable from other systems, general
and tunable at configuration time.

1.3 Contributions

In this work we describe an high-performance, versatile and rel-
atively simple mark-sweep parallel garbage collector and mem-
ory system for SMPs with good scalability (see Section9), mak-
ing good use of the memory architecture (Section6), particularly
well-suited to the allocation patterns of functional programs but
language-agnostic.

Most of our implementation ideas rely on a variant of the clas-
sic BIBOP strategy [25, 13] which, despite its simplicity, has been
exploited surprisingly little: the only discussion of an actually im-
plemented similar solution that we have found is in a 1993 paper
by E. Ulrich Kriegel, [19]. In this paper we provide an intuitive and
experimental justification of the validity of this particular fashion
of dividing the heap into pages, now in the context of a modern
multiprocessor architecture.

The enormous size of the garbage collection literature makes it
hard to claim novelty for most ideas, some of which are varia-
tions of very old implementation techniques, possibly adapted to
the changing trends of hardware performance. Nonetheless we feel
relatively confident in declaring original the following points:

• Our user-level interface to the memory management system
based onkinds, sourcesand pumpsmay have some aesthetic
value, besides slightly boosting allocation performance.

3 Notwithstanding the outdated information athttp://www.hpl.hp.com/
personal/Hans_Boehm/gc/gcdescr.html Boehm’s collector now also
employs signals to stop mutators on all major platforms except Windows,
where Unix signals are not supported but an analogous mechanism exists for
suspending a thread from another thread. [6] mentions GNU/Linux, Solaris,
Irix and Tru64. The Windows implementation inwin32 threads.c uses
signal-like primitives likeSuspendThread().

• We define a set of core data structures and primitives which can
be efficiently implemented, providing a clean and natural high-
level architecture for parallel collectors.

• We show how the BIBOP scheme is appropriate for reducing
memory pressure on machines with modern memory hierar-
chies, introducing the concept ofdata densitywhich we show
to be at least one reason for the good performance of our imple-
mentation.

• If further developments follow our implementation may evolve
into a testbed for comparing the performance of different col-
lection strategies, in a parallel setting; such a framework may
show its utility in tailoring the best collection algorithm to a
particular mutator program, on the machine at hand. As far as
we know, no implementation is currently available to do this in
a parallel setting and without being tied to a particular language.

2. The functional hypothesis
Functional programs tend to allocate many small objects, the great
majority of which have one of only a few possible “shapes”; in
practice, most heap objects will be conses, nodes of balanced bi-
nary trees, or more generally components of inductive data struc-
tures with fixed size and layout, often containing some constant
attributes which must be frequently inspected at runtime such as
types in Lisp, or constructors in ML or Haskell. Depending on the
programming style closures might also be allocated in quantity; al-
locating other objects tends to be statistically much less frequent,
hence less critical for performance.
We define the above set of assumptions as thefunctional hypothe-
sis: our system is designed to run most efficiently when such hy-
pothesis is verified, yetepsilonGC can and does work with any
language, and may even be directly employed for user-written C
programs. Anyway the functional hypothesis is the underlying idea
dictating many implementation choices, and in particular the BI-
BOP strategy central to our design.

3. The user view: kinds, sources and pumps
At a very high level, any automatic memory management system
serves to provide the illusion of aninfinitestream of objects created
on demand, each satisfying some specified requirements such as
size and alignment.

Objects which are not useful any longer can be simply ignored:
there is no need, in general, for a user interface to the recycling
system itself as the whole point of garbage collection is to make
object reusinginvisible to the user, who just keeps creating more
objects as if the memory were unlimited.

The user-level API is built upon three main data structures: the
kind, each instance of which defines one particular set of require-
ments for a group of homogeneous objects, thesource, which ar-
ranges for the creation of objects of one specified kind, and the
pump, providing a single mutator thread with objects from a given
source on demand, one object at a time.

Kinds: We define akind as the specific representation of a group
of homogeneous heap objects. Each kind is characterized by a given
object size, object alignment, a tracer function specifying how to
mark the pointers contained in an object given its address, and
particularmetadatavalues: metadata include4 an integertag and
a pointer, sharing the same values for all the objects of the same
kind. Given a pointer to a heap object, mutators are permitted to
inspect, but not modify, its metadata.

4 Even if they currently comprise only tag and pointer, more metadata can
be easily added in the future if the need arises.

Scalable BIBOP garbage collection for parallel functional programs on multi-core machines: preprint footer 2 2011/6/14

http://www.hpl.hp.com/
personal/Hans_Boehm/gc/gcdescr.html

In general a kind should not be confused with atype: rather than
a type it identifies onecaseamong the potentially many variants
which, together, make up a type. For example aconskind could be
defined, butnot a list kind, which would also comprise the empty
list case, having of course a different representation — by the way,
likely not on the heap.

The tag could be usefully employed in a dynamically-typed
language such as Lisp, for example in order to test at runtime
whether a given object is, effectively, a cons. In a statically-typed
language like ML the tag can encode the constructor of tagged-
sum objects. The pointer metadatum can be useful to refer any
reflection-related data not fitting in a single integer.

All the needed kinds are typically defined at initialization time,
as global structures shared by all mutator threads.

Sources: From the user’s point of view asourcecan be seen as a
global inexhaustible source of objects of a given kind. In the typical
case the user will define exactly one source per kind at initialization
time, as an object shared by all mutator threads; after initialization
mutator threads will only refer sources to create their pumps.

Pumps: A pumpis athread-localdata structure implementing but
one user-level functionality, the creation of an object.

Each mutator thread will create its own pumps referring the
shared, global sources, then use its pumps to obtain new objects.
Pumps have to be explicitly destroyed at thread exit time.

Kindlessobjects: The strategy outlined above — creating objects
of some kind which as been defined in advance — suffices the great
majority of the objects ever created at runtime: for example in Lisp
most heap-allocated objects will be conses, and Prolog heaps will
mostly be made of terms. We callkindedall the objects created as
shown above.

Some other heap-allocated objects do not fit so well in the pic-
ture as it is not possible to foresee in advance their exact size: arrays
and character strings come to mind5. We provide more “traditional”
allocation primitives forkindlessobjects.

Note how the kindless object API (see Figure1) provides for
less control: vector elements can be eitherall potential pointers, or
they can be guaranteed by the user to includeno pointers. There is
not much control on metadata either: all objects share the same6 tag
and metadatum pointer; a user requiring more expressive metadata
has to explicitly encode them in the payload.

Miscellaneous user functionalities: Other primitives are pro-
vided to initialize and finalize the collector, to register and unregis-
ter roots, to notify the memory system about new threads or exited
threads, to explicitly force a collection, and to temporarily disable
collections and re-enable them.

As all of this is canonical and not particularly interesting, we
will not further pursue such details.

4. Architecture
Despite their visual intuitiveness, the data structures above were
designed primarily for efficiency, and the actual role of each struc-
ture is not apparent to the user: in particular a central data structure,
thepage, is completely hidden.

5 Other slightly less obvious cases areprocedure activation records, which
some runtimes of Scheme, Prolog and SML allocate on the heap; if the lan-
guage supports dynamic code generation evencode blocks(either machine
language or bytecode) might be heap-allocated and garbage collected.
6 The actual values can be specified at initialization time, butnonetheless
they must be the same for all kindless objects; it is typically reasonable to
choose some values not used for kinds, so that at least kindless objects can
be distinguished from kinded ones.

Pointers are essential in the implementation of any language re-
quiring dynamic memory allocation, and in order to make pointers
easier to recognize at runtime and their dereference more efficient7,
we restrict the set of heap pointers considered valid toword-aligned
pointers; one word is also the minimum size of a heap object rep-
resentable without space overhead, and all the integers internally
used in the implementation are of typeintptr t, so that the size
of all memory structures remains a multiple of a word size.

The description below will proceedfrom the bottom up: since
many data structures and operations are usable with different col-
lection strategies requiring little or no modifications, we prefer to
illustrate the various possible operations before our way of com-
bining them, in the spirit of separating policy from mechanism.

4.1 Kinded objects

We represent each kinded object as a buffer of words, withno
header; the rationale of this choice is discussed in more depth
in Section6, but the main idea is simply to have long packed
arrays of objects in memory, without any padding unless absolutely
necessary8.

4.2 BIBOP pages

All kinded objects are allocated from data structures calledpages9,
similar to Kriegel’s “STSS cards” [19]: whenever a pump returns
a pointer to a new object, the resulting address will refer a word
contained in a page.

Each page can only contains objects ofonekind. For each kind
any number of pages, including zero, may exist at any given time.

All pages have the same size, which must be a power of
two; the page size is also equal to itsalignment: the rightmost
log2epsilonGC PAGE SIZE IN BYTES bits of a page pointer are
always guaranteed to be zero.
A page is divided intopage header, mark array and object slot
array.

Page header: The page header contains a copy of the kind meta-
data, which of course are valid for all the objects in the page; the
object referred by the metadatum pointer, if any, is shared by all the
pages of the same kind: only the pointer is copied.

Other information contained in the header includes kind-dependant
data such as the object size and effective size, the payload offset,
and the number of object slots in the page. All of this is computed
once and for all when a kind is created, and simply copied at page
initialization time. The address of the first dead slot (see below) is
also held in the header.

7 On many RISC architectures pointers to misaligned objects may not be
just a performance concern: some processor families such as theSparc
simply raise an exception in response to any attempt to dereference a non-
word-aligned pointer. Others, such as thex86family, execute the misaligned
dereference, but imposing a heavy execution time penalty.
We prefer to simply forbid such pointers for all architectures, which may
improve performance and helps to avoid the misidentification ofmany false
pointers.
We also assume convertibility from integer to pointer and vice versa without
loss of information: even if not mandated by the C Standard (thetype
intptr t itself is optional) such an assumption is in practice true on all
architectures.
8 Paddingmustto introduced sometimes in order to respect the alignment
constraints provided by the user: for example the user might require a three-
word structure to be aligned to two or four words; in such cases there is no
way to avoid wasting some space for each object.
9 There is noa priori relation between BIBOP pages and operating system
pages, whose sizes may well be different: BIBOP pages will typically be at
least a few times larger than operating system pages, but still smaller than
the L2 cache. In the following we use the termpageto mean “BIBOP page”.

Scalable BIBOP garbage collection for parallel functional programs on multi-core machines: preprint footer 3 2011/6/14

/* A tracer is a pointer to a function taking a pointer

as its parameter and returning nothing: */

typedef void (*ourgc_tracer_t)(ourgc_word_t);

/* Create a kind: */

ourgc_kind_t

ourgc_make_kind(const size_t object_size_in_words,

const ourgc_unsigned_integer_t

pointers_per_object_in_the_worst_case,

const size_t object_alignment_in_words,

const ourgc_metadatum_tag_t tag,

const ourgc_metadatum_pointer_t pointer,

const ourgc_tracer_t tracer);

/* Create a source from a kind: */

ourgc_source_t ourgc_make_source(ourgc_kind_t kind);

/* Initialize a (thread-local) pump from a source: */

void ourgc_initialize_pump(ourgc_pump_t pump,

ourgc_source_t source);

/* Finalize a pump before exiting the thread: */

void ourgc_finalize_pump(ourgc_pump_t pump);

/* Allocate a kinded object from a thread-local pump: */

ourgc_word_t

ourgc_allocate_from(ourgc_pump_t pump);

/* Lookup metadata: */

ourgc_tag_t

ourgc_object_to_tag(const ourgc_word_t object);

ourgc_metadatum_pointer_t

ourgc_object_to_metadatum_pointer(const ourgc_word_t

object);

ourgc_integer_t

ourgc_object_to_size_in_words(const ourgc_word_t

object);

/* Allocate kindless objects: */

ourgc_word_t

ourgc_allocate_words_conservative(const ourgc_integer_t

size_in_words);

ourgc_word_t

ourgc_allocate_words_leaf(const ourgc_integer_t

size_in_words);

ourgc_word_t

ourgc_allocate_bytes_conservative(const ourgc_integer_t

size_in_bytes);

ourgc_word_t

ourgc_allocate_bytes_leaf(const ourgc_integer_t

size_in_bytes);

Figure 1. epsilonGC’s essential user-level API.
The source above is directly copied from header files, with only GCC function attributes (to force inlining and such) removed and comments
eliminated. Despite looking unconventional the interface is not particularly complex, and in fact is conceived so that performance-critical
operations such asepsilonGC allocate from() and metadata lookup functions can be easily re-implemented in assembly, tobe
generated by a compiler as intrinsics.

Since the header has offset zero within the page, given a pointer
to any kinded object, even internal, the address of its page header
can be trivially obtained bybitwise anding the pointer and thepage
mask, defined as thebitwise negationof epsilonGC PAGE SIZE IN BYTES−
1. This allows mutators to access metadata at runtime with an over-
head of two to four assembly instructions, when needed; on the
other hand the negligible space overhead of storing metadata once
per page makes this solution completely acceptable even for lan-
guages which don’t make use of them.

Mark array: The mark array is placed right after the header, with
no padding: since the header size is a multiple of the word size, the
mark array is guaranteed to always begin at a word boundary.

The mark array stores liveness information for each object10 in
the page: since we currently need only one bit per object, the array
could conceptually always be implemented as a bit vector.

As marking is parallel, mark arrays are concurrently updated by
several threads, which requires some atomic memory accesses (see
Subsection4.6). On many machines byte stores are always atomic,
and even when suitable atomic instructions for bitwise operations
are provided working with abyte vectormay be more efficient11.
On (hypothetical) architectures where the compiler did not support
the required intrinsics, and where an atomic byte store were not
provided, one could use aword vector. The implementation allows
the user to choose at configuration time among bit, byte or word,
bit being the default.

Alternatively, it is possible to enableout-of-page mark arrays
at configuration time, so that mark arrays are stored as separate
malloc()ed buffers; in this case the mark array area in a page de-
generates to a single pointer, and accessing the mark array from
a page requires one indirection. Our original rationale for imple-
menting this strategy was to avoid some cache conflict misses due
to the fact that mark arrays share the same alignment on all pages.
As benchmarks in Section9 show that this is not a problem in prac-
tice with modern multi-way set associative caches, this strategy has
not been pursued further by separating headers from slot arrays.

10 It is interesting to compare this with Boehm’s collector, which stores
one element per objectword, thus making tracing simpler. We have chosen
to slightly complicate the mapping from mark array elements to objects
instead, to speed up the critical operation of page sweeping, and in general
trading more computation for fewer memory accesses.
11 [8], written in 2000, compares the solutions on several architectures,
finding that the optimal solution depends on the machine. According to our
recent tests, the best strategy between bit arrays and byte arrays remains
machine-dependent as of 2008.

Object slot array: Theobject slot arraybegins after the end of the
mark array, at the first word with the required alignment. Object
slots contain the “payload” of each page. At any given time each
object slot may be eitherusedor unused: when used it contains an
object payload; when unused, its first word contains a pointer to the
next unused object in the same page, orNULL in the case of the last
unused slot.

For each page unused slots make up an independent free-list
where elements are always ordered by address.

In order to avoid mistaking free list pointers in unused objects
for pointers in used objects during conservative pointer finding,
free list pointers are stored inconcealedform by default12.

Concealing consists in applying some functionc : Pointer →
PointerC to a free list pointer; it is important forc to be bijective,
as concealing and thenunconcealing(i.e. applyingc−1 to) a pointer
must preserve information.

c is trivially implemented as a C macro computing the successor
function inunsigned (wrap-around) arithmetic: since its domain
consists of word-aligned pointers, the elements of its image are
guaranteed to be misaligned13, hence they cannot be mistaken for
pointers. The cost of applying eitherc or c−1 is one assembly
instruction requiring no memory accesses14.

Depending on the kind, some unused space may be present
between the end of the mark array and the beginning of the slot
array, and at the end of the page; in either case these two padding
spaces are strictly smaller than the object effective size.

The global page table: The globalpage tableserves to recog-
nize which part of the address space is being used for the garbage-
collected heap; such information is important for avoiding derefer-
encing false pointers when doing conservative pointer finding.
Moreover, the collector needs to be able to recognize whether a
heap pointer refers a kinded object in a page slot array or a large
object — no particular provision is needed for kindless small ob-
jects, but we defer the justification of this fact to Section4.5. Since
we support interior pointers for large objects, it must also be pos-
sible to efficiently map an arbitrary (word-aligned) interior pointer
to an initial pointer.

12Free list pointer concealing can be disabled at configuration time.
13Here we are depending on byte-addressable memory; This is truefor all
contemporary general-purpose machines.
14Assuming instructions such as eitherinc/dec or add/sub with a small
immediateparameter; again, all modern machines satisfy this condition.

Scalable BIBOP garbage collection for parallel functional programs on multi-core machines: preprint footer 4 2011/6/14

We call candidate pointera word which is suspected to be a
(possibly interior) object pointer at marking time, andcandidate
pagethe address of the hypothetical page which would contain the
object referred by a candidate pointer. Of course candidate pages
have alignmentlog2epsilonGC PAGE SIZE IN BYTES.

At an abstract level, the table implements a functionf mapping
a non-NULL candidate pagep to an elements of the disjoint sum

Sort , {kinded}+ {nonheap}+ LargeObjects

If f : p 7→ kinded then the candidate pagep is actually a page;
if insteadf : p 7→ nonheap thenp is a pointer referring some
object out of the garbage-collected heap, or a false pointer. Other-
wisef : p 7→ l, wherel is the address of the beginning of the large
object containing the word pointed byp.

Given a value forp stored as a key, a simple encoding allows us to
represent any element ofSort in a single word:NULL represents
nonheap, s = p stands forkinded, and any other value ofs is
interpreted as a large object pointer.

The table is implemented as a simple resizable chained hash
where the first element of each bucket is stored within the bucket
pointer array itself15, as first described in [29]; the hash function is
modulo.

One essential optimization at mark time consists innotconsult-
ing the page at all, which would be comparatively expensive, for
NULL or misaligned candidate pointers.

It is interesting to notice how allupdatesto the global page table
occur at mutation time, when creating or destroying16 pages and
large objects; unfortunately such updates require critical sections
which, short as they are, may nonetheless limit scalability. By
contrast at collection time the table is onlyread, which allows us to
completely avoid critical sections for table access during that stage.

4.2.1 Page creation

Creatinga page involves allocating space from the C heap, filling
the header fields, initializing the mark and object slot arrays and
registering the page in global structures.

Because of the alignment requirements we currently allocate
pages withposix memalign()17; as this may involve a kernel call

15This optimization is the reason why we don’t includeNULL in the domain
of f : we use the valueNULL as a key in a hash table element out of the
bucket to mean that the element is currently unused.
16See Subsection4.6 for the reason why pages must be destroyed atmuta-
tion rather than collection time.
17An interesting alternative to explore would involve usingmmap() to
allocate a group of pages; for some (non-GNU) implementations of
posix memalign(), themmap() solution might incur a significantly lower
space overhead, at the cost of always involving the kernel inpage creation.
Usingmmap() could in fact make deallocation more portable, asfree()ing
buffers allocated withposix memalign() is only permitted on GNU sys-
tems, as far as we know ([20], “Allocating Aligned Memory Blocks”, cur-
rently at subsection 3.2.2.7).
However themmap() solution has some issues of its own:mmap() only
guaranteessysconf(SC PAGESIZE) alignment, hence pages could only
be reasonablymmapped in large groups, with some space overhead at the
beginning and the end. MakingepsilonGC PAGE SIZE IN BYTES equal
to sysconf(SC PAGESIZE) would solve the space overhead problem, but
at the price of forcing pages to be unacceptably small.unmmapping space
from the middle of ammapped buffer is supported, but deallocation of single
pages would still be a problem unlessepsilonGC PAGE SIZE IN BYTES
were chosen to be a multiple ofsysconf(SC PAGESIZE). Re-mmapping
a previouslyunmmapped part of a buffer istypicallysupported, even if such
behavior is not mandated by POSIX. In addition we would need some data
structure to keep track of which pages in a large buffer aremmapped at any
given time.

and/or synchronization in the C library, such operation tends to be
both expensive and hard to parallelize.

Filling the header involves little more than copying some fields
from the kind data structure, which is directly referred by the
source, and making the free-list head point to the payload begin-
ning. Nothing of this is performance-critical.

The mark array has to be zeroed at creation, with amemset()
call. This should be relatively efficient, just involving some evic-
tions from L1 — however having the mark array in L1 at page
creation time does not buy us anything, as mark arrays are only
touched during collection. If out-of-page mark arrays are enabled
then we should add amalloc() call to the cost.

Building the free list involves some memory traffic, as all ob-
jects need to be touched. Unless objects have effective size larger
than a cache line the complete object slot array has to be brought
into cache. Even if this phase by itself is expensive, it may work
like a sort of prefetching: if the page is used soon, all of it will al-
ready be loaded at least in the L2 cache.
We definebackward free list building18 the strategy of building the
free list starting from thelastslot which will be used for allocation.
This solution has locality advantages in case of large page size, un-
der the assumption that a just-created page will be used soon for
allocating: if the page size is larger than the L1 data cache, build-
ing the free list backwards makes it very likely that the memory
touched first while allocating will be already in L1; the rest of the
page will be still in L2. It is possible to choose between forward
and backward free list building at configuration time.

The final step is registering the page in the page table, which
requires a critical section on the global mutex, plus amalloc()
call within the critical section in case of hash collision.
All of this makes page creation a relatively expensive and non-
scalable operation.

4.2.2 Page sweeping

Sweepingcan be performed on an individual page without need
for synchronization or kernel calls. It simply involves scanning the
mark array and, for eachi-th element, either clearing the corre-
sponding element ifarray[i] is one, or making thei-th object slot
unusedby re-adding it to the free-list ifarray[i] is zero. Since the
mark array is examined in order (either forward or backward, as per
the free-list building direction), free list elements are kept ordered
by address in the list. All the words of dead objects other than the
first one are overwritten19, to prevent future false pointers referring
the slot to keep alive the objects which were referred by the now
dead slot.

Memory access patterns in sweeping are similar to the ones in
mark array initialization and free-list construction; in particular a
just-swept page will likely remain cached at least in L2 — and the
next lines to be used will be in L1, if backward free list building is
enabled.

Anyway, despite all the complexity, such an idea seems worthy of some
exploration.
18The actual direction of free list building, from higher addresses down
to lower ones or from lower addresses up to higher ones, has noeffect on
performance as long as it isthe oppositeof the allocation direction: note
in particular how automatic hardware prefetching works in either direction
on modern processors ([12], section 3.3.2, “Single Threaded Sequential
Access”).
19Each word is overwritten with a configuration-dependent value impossi-
ble to mistake for a pointer: either the0xdead constant (which is easy to
recognize for humans) if the collector is configured in debug mode, or other-
wise simply0 (which might lead to a slightly more efficient implementation
on some architectures, possibly saving aload immediateinstruction). Over-
writing dead slots can also be completely disabled at configuration time.

Scalable BIBOP garbage collection for parallel functional programs on multi-core machines: preprint footer 5 2011/6/14

4.2.3 Page refurbishing

It is possible to re-use an empty page of some kind for objects of
another kind: such operation is calledrefurbishing, and involves
reconstructing the header, mark array and free list.

Refurbishing has essentially the same overhead as sweeping,
and the cache effects of the two operations are also comparable:
allocations from a just-refurbished page on the same thread which
performed the refurbishing is efficient as all the page cache lines
will still be in L1 and L2.

4.2.4 Page destruction

Destroying a page involves its deallocation and removal from the
global page table: such operations are expensive and non-scalable,
involving synchronization and possibly kernel calls.

4.3 Sources

From the implementation point of view a source is quite a trivial
structure, serving as repository of pages. Each source simply con-
tains two lists of pages, thefull pages listand thenon-full pages
list, plus a mutex for synchronizing access to such lists.

4.4 Pumps

Pumps are performance-critical structures whose purpose at the
implementation level consists in caching frequently accessed data
about the objects to allocate. Such criticality is evident from the
API in Figure 1, showing how existing pump data structures are
initialized rather than dynamically allocated, in an effort to save a
pointer indirection at runtime: pumps are conceived to be declared
in programs as thread variables of typestruct epsilonGC
pump, rather than as pointers.

At any given moment a pump may conceptually “contain” a
page reserved to the allocating thread, or no page; of course at the
implementation level such an inclusion is represented with a page
pointer field. Its other relevant field is the current head of the page
free list, again kept in the pump rather than in the contained page
in order to avoid a pointer indirection at allocation time: in fact the
free-list head field of the page is, counter-intuitively,notupdated at
each allocation. The free-list head field of thepumpis set toNULL
when the pump contains no page.

4.4.1 The allocation function

Despite the allocation being the only user-level operation on a
pump, such a functionality is very performance-critical. Allocat-
ing from a given pump involves unconcealing the free-list field into
a temporary variable, if non-NULL dereferencing it, setting the free-
list head to the just loaded value and finally returning the tempo-
rary. This shorter and far more common execution path is care-
fully optimized and costs aboutten assembly instructions, with no
taken20 jumps; the other execution path is taken in case ofpage
changetime, when a page is filled and another one must be ac-
quired from the relevant pool, or at the first allocation for a pump
with no page: it involves synchronization with the pool mutex and
access to its lists. If no non-full pages are available, a page is taken
from aglobal empty pages list(at the cost of one further synchro-
nization) and refurbished if needed. If no empty pages are available,
an heuristic is employed to decide whether to create a new page, or
to trigger a collection. Page change is also the taken as the occa-
sion for destroying empty pages, if an heuristic says that there are
more than enough: the rationale here is to avoid destroying pages
too frequently, since they might be needed again and both creation
and destruction are expensive.

Repeatedly allocating from a page which was recently swept
by the same thread and which contains many unused slots should

20 It is worth to give GCC an optimization hint withbuiltin expect().

be cache-friendly: sweeping works like a prefetch phase to load
the page payload into the L1 or L2 cache, and even without on-
demand sweep the hardware automatic prefetch may be activated
when there is much free space on the page, as consecutive addresses
are generated. Using pumps automatically guarantees that a page is
only used for allocation by one CPU at a time, which avoids cache
ping-pong.

4.5 Kindless and large objects

The data structures and primitives shown above provide no hints
about the implementation of kindless objects, yet the idea is quite
simple. A set ofimplicit kinds, sourcesand per-threadpumps21,
of user-definable sizes, are automatically defined: in this sense
most kindless objects are just kinded objects “in disguise”, only
slightly less efficient because of the need for mapping an object
size to a pump at runtime, and because of the possibility of internal
fragmentation: not all possible sizes will be realistically provided,
so the allocation of an object of a given size might be satisfied by
using a larger buffer. For each size two kinds are provided, one with
a fully conservative tracer, and another one with a leaf tracer (called
“atomic” in the jargon of Boehm’s collector).

It is easy to see how the solution above is not completely gen-
eral, as it cannot satisfy allocation requests for objects larger than
a page or even just larger than the maximum implicit kind size
which has been fixed by the user. A different mechanism is pro-
vided forlarge objects, which are simply allocated one by one with
malloc() and destroyed withfree(). Their implementation is
simple-minded and quite inefficient in both space and time, which
given the functional hypothesis should hopefully not be serious. Of
course the user-level API completely hides the difference between
implicitly-kinded and large objects.

4.6 Garbage collection

A collection is initiated by one mutator, which stops all the other
mutators with a signal. This choice has the advantage of allow-
ing a simple user API, but significantly complicates the collector
implementation: any function not reentrant with respect to signals,
notably includingmalloc() andfree(), can not be used at collec-
tion time: this is the reason why empty pages have to be destroyed
atmutationrather than collection time.

The collection phase may internally proceed in two different or-
ders according to a configuration option: ifon-demand sweeping
is enabled, as per the default, the three sub-phases arenon-deferred
sweeping, root marking and marking, otherwise they areroot mark-
ing, marking and sweeping. In any case it is central to maintain the
invariant according to which a complete heap marking is followed
by a complete sweeping, before the next marking can begin.

On-demand sweeping consists in sweeping a page during mu-
tation at page change time,just before allocation from it begins:
such a choice is more cache-friendly than the traditionalstop-the-
world sweep, but it may leave some pages still to be swept when a
collection begins: the non-deferred sweeping sub-phase, typically
very short, serves to sweep such remaining pages. Non-deferred
sweeping and stop-the-world sweeping share the exact same im-
plementation.

After collection all mutators are restarted with a second signal.

Root marking: Root marking is very simple, and currentlyse-
quential (this should be changed in the future: see Section9).
Just like Boehm’s collector in most of its configurations, it uses
setjmp() for finding register roots in a portable way.

21 Implicit pumps are created at thread registration and destroyed at thread
un-registration time.

Scalable BIBOP garbage collection for parallel functional programs on multi-core machines: preprint footer 6 2011/6/14

Marking: Given the atomicity of mark array stores parallel mark-
ing can easily proceed in parallel without synchronization, if we ac-
cept the possibility of some (statistically unlikely) duplicate work;
our implementation is quite canonical and closely follows Boehm’s
one [9], with load balancing in the style of Taura and Yonezawa
[14]22. It should be noted that the BIBOP organization does not
affect marking in any significant way.

Sweeping: Parallel sweeping is even simpler, with pages dictat-
ing the natural granularity for the operation of each thread: pages
are simply taken from a list, swept and put back into another list.

4.7 Synchronization

One interesting and possibly original detail involves our locking
style: in order to prevent a collection from starting during a critical
section at mutation time, a globalread-write lockis locked for read-
ing at mutation, before acquiring the relevant mutex: the collection
triggering function, before sending the signal, locks the same read-
write lock for writing.

5. Implementation
epsilonGC’s implementation totals around 5000 lines of heavily
commented C code, indeed quite easy to understand for being
such a low-level concurrent piece of code not sparing C macros,
#ifdefs, GCC function attributes and intrinsics in order to be
supportAutoconfoptions and be as general and efficient as possible.

The code will be soon publicly released.

6. Data density
The system internally measures object size and alignment inma-
chine words, and one word is the minimum size of a kinded object
which can be represented without padding, in absence of alignment
constraints specified by the user; with an alignment greater than
one word, it becomes necessary in some cases to add some padding
space right after the object payload; we call theeffective sizeof an
object the sum of its size and its alignment padding.

Given a kindk of objects with alignmentak and sizesk, we
define the effective sizeek needed to store each object, and the
correspondingdata densitydk, the number of objects representable
per word, as:

ek , ak ·

⌈

sk

ak

⌉

dk ,
1

ek

The definitions above intentionally disregard all the sources of
memory overhead out of object slot arrays, including mark arrays
and all garbage collector data structures, the rationale being that
density is not meant as a measure of memory occupation, but rather
as an index ofthe number of objects fitting in a cache line: as mark
arrays and other collector data structures are mostly accessed at
different times from the objectsper seand reside in different cache
lines, optimizing data density maximizes the amount of useful
information stored in the physically limited cache space at mutation
time.

Data density may be reasonably defined in the same way in-
dependently from the garbage collecting strategy, and indeed it is
of some interest to compare the values ofdk in different memory
management systems for two kinds which are widely employed in
functional programs, thecons (two words:car and cdr) and the

22Benchmarks in section9 show that this simple solution can be satisfying,
at least up to 8 processors.Room synchronization[10] or work-stealing[5]
are two more complex, and presumably more scalable alternatives.

non-emptynodeof an Red-Black binary tree of some given color23

(three words:left, datumandright). Neither kind has alignment re-
quirements, henceacons = anode = 1.

Several systems such as theGNU libc malloc() facility [20],
all the other allocators derived from Doug Lea’smalloc() and
— even more interestingly — Boehm’s collector [7], allocate all
buffers at double-word-aligned addresses and may also add some
internal status informationto each buffer; metadata, when needed,
must be represented as part ofeachobject, adding tosk. Instead
many other systems, including just for example OCaml, do not
force any alignment but always add one header word per object24,
sufficient to include a short tag, which again we consider part ofsk.

If metadata are accessed at runtime, as it is the case with
dynamically-typed languages, with Boehm’s collector we have
dcons = dnode = 1

4
. When metadata are not needed Boehm

has optimal density in the cons case withdcons = 1

2
, but again

dnode = 1

4
. In OCaml, with or without metadata,dcons = 1

3
and

dnode = 1

4
.

Independently of the need for metadata at runtime our model
allows us to reach optimal density for both kinds, withdcons = 1

2

anddnode = 1

3
.

The data density of a particular representation seems likely to play
a role in theoverallefficiency of the system, even ignoring the cost
of allocation and collection and considering only object accesses;
anyway further empirical evidence will be needed to confirm this
supposition for real world programs.

Subsection9.1 includes a comparison of the performance of
epsilonGC on nanolisp in its default configuration and when
using a different data representation with intentionally lower data
density.

7. Closures
Functional programs written in certain styles25 create a consider-
able number of short-lived anonymous functions at runtime, imple-
mented as closures. At a first look such a scenario does not seem to
respect the functional hypothesis, as in principle closures can have
many different shapes, depending on the number of non-locals cap-
tured in the environment, and on the fact that each non-local can be
a pointer or a non-pointer.
Even if allocating all closures (or just their environments, when
they need to be heap-allocated) as kindless objects would work, the
overhead of such a simple-minded solution is in fact easy to avoid.

First of all it should be observed that the great majority of func-
tions need either zero or one variable in their non-local environ-
ment; it may be worth to add specific kinds for such common
cases, and possibly also for the most performance-critical functions
with larger non-local environments, when it is possible to recognize
them with compile-time heuristics or after profiling.
The number of needed kinds can be reduced by establishing a con-
vention for ordering non-locals in their environment arrays, accord-
ing to whether they are pointers or not: either first all pointers then
all non-pointers, or vice-versa.

The idea ofnormalizing the representationis a sort of pattern
in the BIBOP scheme, generalizable to many other cases when
using statically typed languages: there is no reason why two cases

23The example trivially generalizes to AVL trees, the idea being simply
that the balance-related information can usefully be represented asmeta-
data rather than data.
24Some systems add even more than one header word per object. Sun’s
JDK, MMTk [4] and Microsoft’s CLR, for example, use two words.
25And in particular when using simple compilers or interpreters: higher-
order code can be simplified with flow analysis.

Scalable BIBOP garbage collection for parallel functional programs on multi-core machines: preprint footer 7 2011/6/14

of different concrete types, possibly completely unconnected at
a semantic label but with the same effective size and number of
potential pointer fields, cannot be represented in such a way to share
the same kind.

8. Lazy and object-oriented languages
Lazy languages require a slightly more sophisticated data represen-
tation than call-by-value languages, as in a realistic implementation
it must be possible to destructively update a still-unevaluated thunk,
and replace it with the result at the end of its computation.
Unsurprisingly, epsilonGC does not provide any support for
changing the kind of an existing object while maintaining its iden-
tity; that could be possibleat collection timein a moving scheme,
but not with mark-sweep26.

Any standard solution already employed by the collectors for
lazy languages such as Haskell can be adopted: unfortunately some
of the cleanness of the BIBOP model is lost in this case, as data
(notmetadata, for obvious reasons) needs to be tagged with at least
a boolean (two in a concurrent environment: objects may bethunks,
in flux or ready) recording the evaluation state of an object; any
unused bit sequence in the payload or even the mark array entry of
the object can do the job.

Accessing possibly still-to-be-evaluated objects will often re-
quire a conditional at runtime, just like in conventional implemen-
tations of lazy languages; after an object is known to be ready, BI-
BOP metadata can be accessed just as for eager languages.

Such a solution also necessarily requires some form of synchro-
nization if the mutator threads are more than one: of course it is
always possible to add a synchronization word in the payload, if
needed.
From this point of view the situation is not different for “managed”
languages such as Java, whereeachobject contains a header word
reserved for that purpose; yet we believe that not forcing such an
expensive representation forall objects is preferable in the general
case; the user can always implement some additional logic where
needed, out of the memory management systemper se.

For most runtimes there is no reason for keepingone mutex per
object, and even lazy languages such as Haskell normally employ
strictness analysisto statically recognize many cases in which
laziness is not needed, and more efficient traditional representations
can be safely used.

The work aboutProlific Typescited in Section12 is relevant for
object-oriented languages.

9. Benchmark
As this benchmark is intended to stress the memory system and
the garbage collector, the programs look quite different from typ-
ical parallel applications, featuring essentially no synchronization:
with one exception all programs are embarrassingly parallel and
perform thesameoperations on thesamedata, in parallel from dif-
ferent threads. In every case the computation is performed eight
times: depending on how many parallel threads are employed, some
of these computations proceed at the same time; for example, a run
using two processors will consist in using two threads for comput-
ing the same function in parallel, all of this four times, one after

26 In a moving BIBOP collector otherwise similar toepsilonGC it might
be reasonable to split each kind into aevaluatedkind, plus athunk-or-
evaluatedone: all the alive evaluated objects of a thunk-or-evaluated kind
would bere-kindedat collection time. This idea does not look particularly
hard to implement, but keeping the collector both efficient andlanguage-
agnostic might be challenging. Moving-time hooks definable bythe user
would solve the problem, at some cost; the overhead could be reduced by
allowing to re-compile the hooksas part ofthe collector, to be called as
inline functions, like described for example in [28].

another.
The one exception is also the most realistic program, a Prolog in-
terpreter written in functional style, which isalsorun with only one
mutator, in order to test the scalability of the collector itself in the
worst possible situation of unbalanced load, of course in a situation
where an opportunity for parallel collection exists.

Benchmark programs are allocation-intensive but they are
thought to be relatively realistic use cases of functional program-
ming, as far as synthetic benchmarks can be; in other words, they
arenot limited to allocating at the highest possible rate.

Programs are written innanolisp, a simple but realistic par-
allel Lisp compiler which supports either Boehm’s collector or
epsilonGC. Tests are also run onnanolisp configured to use
epsilonGC with kindless s-expressions, in order to intentionally
lower the data density of conses and functions from1

2
to 1

4
. The

defaultepsilonGC configuration was tested with fixed heap sizes
of 512Mb and 1Gb; the kindless configuration was tested with heap
sized of 1Gb and 2Gb, in order to compensate for the less efficient
space utilization. Boehm’s collector was left in one case in its de-
fault configuration, and in the other one both the initial and the
maximum heap size were set to 5Gb.

The test machine is an Intel Xeon double quad-core SMP with
8Gb RAM.

More details are available in the Appendix.

9.1 Evaluation

The system is quite scalable, particularly when configured with a
larger heap: the total completion time of parallel programs with
epsilonGC averages a scalability of 5.56 with 8 processors in the
1Gb configuration.

The worst case are programsort andclone, the first of which
is confined in a heap too small for its temporary data, while the
second was explicitly designed for growing a large alive heap,
producing no garbage. At leastclone would surely have benefited
form a generational collector.

Mutation time scales noticeably better than collection time,
which shows the unsurprising fact that parallel collection itself (as
opposed to parallel allocation) is not profitable in the presence of
only linear structures or too few alive objects.

The relatively high number of collection and the consequent
overhead from the signals interrupting the mutators is probably one
reason for the relatively disappointing scalability with the 512Mb
heap; implementing safe points would solve the problem, at the cost
of some flexibility.

The sequential Prolog program shows a case where the collec-
tion itself, and marking in particular, approaches linear scalability.
Of course such a performance would not be possible if the alive
heap were composed of long linear structures, instead of tree-like
objects.

Usingn processors multiplies byn the size of the alive heap,
hence it is normal that collections become more frequent when the
number of processors grow.

The kindless configuration performs consistently worse than the
kinded one, even if the number of collections is similar.

OProfile reports a much larger number of L2 cache misses with
Boehm’s collector, which may partially explain the difference in
scalability and completion time. The same phenomenon is observ-
able with the kindless configuration ofepsilonGC, despite in a less
dramatic way.

Profiling also confirms that most cache faults withepsilonGC
happen during the mark phase rather than during mutation. Our
simpler implementation of the BIBOP table as a hash table might

Scalable BIBOP garbage collection for parallel functional programs on multi-core machines: preprint footer 8 2011/6/14

play an important role, compared to Boehm’s more complex multi-
layered tree, requiring more memory accesses.

Our load balancing strategy seems to work fine at least on eight
processors, despite being quite simple to implement; however the
experience of [14] shows that we may be next to hit a scalability
limit.

It is interesting to note thatnanolisp was originally a simple
interpreter without tail-recursion support. Early benchmarks with
that first implementation showed quite different results, as the sys-
tem was not able to exploit the available memory bandwidth of
the machine due to the interpretive overhead. Scalability was way
better than with the compiler, but the absolute performance of the
interpreter was more than an order of magnitude lower.epsilonGC
performed slightly better than Boehm’s collector, but the difference
was much less marked than with the interpreter; moreover the lack
of tail-recursion optimization forced us to keep the parameters
small, and unrealistically stressed the root marking part of the col-
lector.

We can at the very least conclude from the benchmark that meta-
data lookup using BIBOP page headers isnot slowerthan using
object headers.

10. Further developments
As promising as it may already lookepsilonGC needs several
enhancements, the most urgent of which are support forfinalization
andweak pointers; root marking can be quite easily parallelized,
and the heuristic which triggers collection and resizes the heap can
definitely be tuned better, and optionally left for the user to provide.

Generational collectionwould be of benefit in most workloads;
the fact that mark arrays can already be configured as vectors of
bytes or words makes them attractive to couple generation num-
bers to mark bits, at the granularity of single objects. A write barrier
could be either implemented withmprotect() (for human-written
programs) as with Boehm’s collector in generational mode, or by
providing an explicit macro or function (for compiler-generated
code). On the other hand, most currentincrementalstrategies tend
to make pauses shorter at the price of reduced bandwidth (see
Chapter 8 of [18]): while for obvious reasons non-concurrent in-
cremental schemes do not offer any advantage with respect to
bandwidth, a multi-thread strategy where mutators and collectors
threads actually worked in parallel could be attractive; unfortu-
nately the invariably required collector/mutator synchronization in-
curs a cost which looks difficult to offset with parallelism.

An even more radical future change might involve changing
from mark-sweep to acopyingstrategy: again it could be of some
use to adapt mark (word) arrays to store forwarding pointers27, and
employ atomiccompare-exchangeintrinsics for parallel lockless
moving. Pages would continue to dictate the natural granularity of
parallel operations.
A copying strategy typically entails accurate pointer identification
for best performance at allocation time, despitemostly copying
collection also being a possibility [3]. In order to enable this it
would not be hard to (conditionally) support safe points; rather it is
not clear whether the time needed to stop mutators would adversely
impact scalability, or instead improve it: the answer might depend
on the number of processors.

Several such strategies could be usefully combined, for example
by making a two-generation system with a non-moving old genera-
tion and a copying nursery; all the possibilities would remain avail-

27Forwarding pointers could also be stored in the first word of the payload
in a non-concurrent setting, but only under the assumption that forwarding
pointers are recognizable at runtime; this is inconvenient if the data repre-
sentation is otherwise untagged.

able at configuration time or even at run time, in the spirit of what
[2] does for C++ and [11] for managed runtimes.

The possibility of explicit destroying objects could be extended
to kindedarenas, easy to implement with pages, allowing compil-
ers to control the creation and destruction of kinded objects with
statically known lifetime — the stack cannot be used for that if
metadata have to be accessed.

Even if it is definitely possible to port the implementation to
other operating systems, portability is one of the several areas
where we cannot hope to match Boehm’s work, another one being
the ability to automatically find global roots.epsilonGC does not
do blacklisting [7], either; even if using conservative pointer finding
only for tracing roots, blacklisting would likely be useful on 32-bit
processors.

In order to accurately evaluate its performance on standard
benchmarks it would be very interesting to adapt some mature
language runtime to useepsilonGC.

11. Conclusions
While describing our implementation ofepsilonGC, a new BIBOP
parallel garbage collector, we have outlined a possible general ar-
chitecture on which other high-performance memory management
systems for shared memory machines may be based. The user-level
API based onkinds, sourcesand pumpsprovides an alternative
to current allocation interfaces, making allocation particularly ef-
ficient and scalable.

The architecture is conceived for the allocation patterns of func-
tional programs, but fairly tunable and in fact largely independent
from the language.

Benchmarks show how the BIBOP model allows for efficient im-
plementations; in particular notwithstanding its lack of fine-tuning
our implementation compares favorably to Boehm’s collector in
performance.

We show how the efficiency ofepsilonGC may be due at least
in part to the optimaldata densityof its data representation, despite
the need for stronger experimental evidence of this correlation.

12. Related work
Many free software programming language implementations in-
clude garbage collectors, some of which with excellent perfor-
mance on uniprocessors; unfortunately such implementations tend
to make assumptions on the language, the compiler or other parts
of the runtime, and as a consequence they are hard to disentangle,
reuse and even benchmark in isolation. We don’t know of any sta-
ble28 version of such collectors making use of SMPs.

Being portable and very easy to interface to nearly any C pro-
gram, the Boehm-Demers-Weiser garbage collector [7], now main-
tained by Hans Boehm at HP, is employed by a large number of
free software projects.

Toshio Endo, Kenjiro Taura and Akinori Yonezawa of the Uni-
versity of Tokyo maintained SGC [14], an interesting fork of Bo-
hem’s collector exploiting large shared-memory parallel machines,
from 1998 to 2003. Unfortunately their project now looks aban-
doned, the code does not even compile on modern systems and we
have been unable to easily fix it.

28 A future version of the Haskell compiler GHC will support a parallel
collector [21]. As of the last released version (6.8.3 at the time of writing),
GHC supports SMPs but its garbage collector is still single-threaded. See
http://hackage.haskell.org/trac/ghc/wiki/GarbageCollector
Notes. A promising experimental branch of MLton available on Subversion
atsvn://mlton.org/mlton/branches/on-20080218-parallel
-runtime-branch supports parallel collection.

Scalable BIBOP garbage collection for parallel functional programs on multi-core machines: preprint footer 9 2011/6/14

http://hackage.haskell.org/trac/ghc/wiki/GarbageCollector
Notes
svn://mlton.org/mlton/branches/on-20080218-parallel
-runtime-branch

Around 2001 Boehm updated his collector to optionally mark
in parallel on SMPs [8, 9]. Despite being less ambitious than the
Japanese project, the parallel version of his collector yields a good
speedup and — even more importantly — allows to allocate in
parallel from several threads without too much locking; nonetheless
opportunities of further improvement remain, some of which we
have explored in this work.

Qishby Basile Starynkevitch [24] is another language-agnostic
garbage collector. As a copying exact collector it would be inter-
esting for a comparison, but unfortunately it is currently sequential
and does not support multi-thread mutators.

Some more recent publications [1, 15] present parallel garbage
collectors for Java. [1] is particularly interesting in highlighting
the relatively high performance of a simple non-generational mark-
sweep schema, which is competitive with much more complex so-
lutions. All such collectors represent metadata in object headers,
which is reasonable for an object-oriented language requiring thou-
sands of different kinds, but does not fit the functional program-
ming use case as well. Despite its good performance and multipro-
cessor support Sun’s OpenJDK memory subsystem shares the same
problem, as it represents metadata in structures named “klasses”,
pointed by one of thetwowords of the header in each object [26].

Object-Oriented programs also tend to respect a variant of the
functional hypothesis (called the “Prolific Hypothesis” in [23]), the
difference being in the fact that the number of potential kinds may
be intrinsically much higher. [23] describes (among the rest) an
interesting and more complex collector organization for the JVM,
also based on the idea of reducing the object header size when-
ever possible, but unfortunately not directly suitable for functional
languages. A variant of the hybrid BIBOP/type-based collector
hinted at the end of Section 4 in [23] could be implemented over
epsilonGC.

References
[1] C. Richard Attanasio, David F. Bacon, Anthony Cocchi, and Stephen

Smith. A comparative evaluation of parallel garbage collector
implementations. In Henry G. Dietz, editor,Languages and
Compilers for Parallel Computing, (14th LCPC’01), volume 2624
of Lecture Notes in Computer Science (LNCS), pages 177–192.
Springer-Verlag (New York), Cumberland Falls, KY, USA, August
2001. Revised Papers 2003.

[2] Giuseppe Attardi and Tito Flagella. A customisable memory
management framework. Technical Report TR-94-010, International
Computer Science Institute, Berkeley, 1994. Also Proceedings of the
USENIX C++ Conference, Cambridge, MA, 1994.

[3] Bartlett. Compacting garbage collection with ambiguous roots.
Technical Report 88/2, Digital Equipment Corporation, Western
Research Labs, 1988.

[4] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley.
Myths and realities: the performance impact of garbage collection.
In Proceedings of the International Conference on Measurements
and Modeling of Computer Systems, SIGMETRICS’04, Performance
Evaluation Review (PER), pages 25–36, New York, NY, USA, June
2004. ACM SIGMETRICS/IFIP.

[5] Robert D. Blumofe and Charles E. Leiserson. Scheduling multi-
threaded computations by work stealing.J. ACM, 46(5):720–748,
1999.

[6] Hans Boehm. Re: Unregistering the main thread. Thread on Boehm’s
GC public mailing list, September 2008.
http://www.hpl.hp.com/hosted/linux/mail-archives/gc/
2008-September/002334.html.

[7] Hans Boehm and Mark Weiser. Garbage collection in an uncooper-
ative environment.Software – Practice and Experience, September
1988.

[8] Hans-J. Boehm. Fast multiprocessor memory allocation and garbage

collection. Technical Report HPL-2000-165, Hewlett Packard
Laboratories, December 21 2000.

[9] Hans-Juergen Boehm, Alan J. Demers, and Scott Shenker. Mostly
parallel garbage collection. InPLDI, pages 157–164, 1991.

[10] Cheng and Blelloch. A parallel, real-time garbage collector.
SPNOTICES: ACM SIGPLAN Notices, 36, 2001.

[11] Michal Cierniak and Intel Corporation. The open runtimeplatform:
A flexible high-performance managed runtime environment.Intel
Technology Journal, 7:5–18, 2003.

[12] Ulrich Drepper. What every programmer should know about memory.
Technical report, RedHat, November 2007.

[13] R. Kent Dybvig, David Eby, and Carl Bruggeman. Don’t stopthe
BIBOP: Flexible, and efficient storage management for dynamically-
typed languages. Technical Report TR 400, Indiana University,
Computer Science Department, March 1994.

[14] Toshio Endo, Kenjiro Taura, and Akinori Yonezawa. A scalable mark-
sweep garbage collector on large-scale shared-memory machines. In
High Performance Computing and Networking (SC’97), 1997.

[15] Christine H. Flood, David Detlefs, Nir Shavit, and Xiolan Zhang.
Parallel garbage collection for shared memory multiprocessors.
In Java Virtual Machine Research and Technology Symposium.
USENIX, 2001.

[16] Free Software Foundation. The GNU Project. Official webpage.

[17] R. Halstead. Implementation of multilisp: Lisp on a multiprocessor.
In ACM Symposium on Lisp and Functional Programming, Austin,
Texas, August 1984.

[18] Richard Jones and Rafael Lins.Garbage collection: algorithms for
automatic dynamic memory management. Wiley, pub-WILEY:adr,
1996. Reprinted in 1999 with improved index, and corrected errata.

[19] E. Ulrich Kriegel. A conservative garbage collector for an eulisp
to ASM/C compiler. OOPSLA 1993 Workshop on Memory
Management and Garbage Collection, September 1993.

[20] Sandra Loosemore, Richard M. Stallman, Roland McGrath, Andrew
Oram, and Ulrich Drepper.The GNU C Library Reference Manual.
GNU Press, 2006.

[21] Simon Marlow, Tim Harris, Roshan James, and Simon Peyton
Jones. Parallel generational-copying garbage collectionwith a block-
structured heap. In Steve Blackburn, editor,ISMM’07 Proceedings of
the Sixth International Symposium on Memory Management, pages
11–20, Tucson, AZ, June 2008. ACM Press.

[22] Luca Saiu. The epsilon project — a functional language implementa-
tion (MD thesis), February 14 2007.

[23] Yefim Shuf, Manish Gupta, Rajesh Bordawekar, and Jaswinder Pal
Singh. Exploiting prolific types for memory management and
optimizations. ACM SIGPLAN Notices, 37(1):295–306, January
2002.

[24] Basile Starynkevitch. Qish introduction, 2005.
http://starynkevitch.net/Basile/qishintro.html.

[25] Guy Lewis Steele. Data representations in PDP-10 MACLISP. Report
A. I. MEMO 420, Massachusetts Institute of Technology, A.I.Lab.,
Cambridge, Massachusetts, 1977.

[26] Sun Microsystems, Inc. HotSpot Glossary of Terms, 2008.
http://openjdk.java.net/groups/hotspot/docs/
HotSpotGlossary.html.

[27] Herb Sutter. The free lunch is over: a fundamental turn toward toward
concurrency.Dr. Dobb’s Journal, March 2005.

[28] Derek White and Alex Garthwaite. The GC interface in the EVM.
Technical Report SML TR–98–67, Sun Microsystems Laboratories,
December 1998.

[29] F. A. Williams. Handling identifiers as internal symbols in language
processors.Communications of the ACM, 2(6), June 1959.

Scalable BIBOP garbage collection for parallel functional programs on multi-core machines: preprint footer 10 2011/6/14

http://www.hpl.hp.com/hosted/linux/mail-archives/gc/
2008-September/002334.html
http://starynkevitch.net/Basile/qishintro.html
http://openjdk.java.net/groups/hotspot/docs/
HotSpotGlossary.html

Appendix — Benchmark data
Benchmark programs are written innanolisp, a simple and by
itself quite uninteresting compiler of a non-standard Lisp dialect
similar to Scheme with afuture construct [17]. The runtime
of nanolisp was developed in C, as a prototype forepsilon’s
runtime.

nanolisp is properly tail recursive (when the generated code
is compiled by GCC). Environment data structures are created on
the stack when possible29. nanolisp’s S-expressions are efficient:
they use in-word tags for unboxed objects, and when the interpreter
is configured for usingepsilonGC it makes use of kind metadata
for boxed objects; however, relying on conditional compilation
and macros,nanolisp also supports Boehm’s collector; in such
configuration it represents boxed objects with a one-word header
containing type information.nanolisp provides an opportunity to
compare the two systems.

In an attempt to test the data density hypothesis we also de-
veloped a modified configuration ofnanolisp which runs with
epsilonGC, but usingone-word object headersfor the type tag
of all unboxed objects instead of exploitingepsilonGC’s metadata
features: conses and closures become kindless in this configuration,
and both their data densities drop from1

2
to 1

4
; the intention is to

make a comparison with Boehm’s collector more fair.
As the following benchmark programs are intended to stress

the memory system rather thannanolisp, they look quite differ-
ent from typical parallel computation applications, featuring essen-
tially no synchronization: all programs are embarrassingly parallel
and perform thesameoperations on thesamedata, in parallel from
different threads. In every case the computation is performed eight
times: depending on how many parallel threads are employed, some
of these computations proceed at the same time; for example, a run
using two processors will consist in using two threads for comput-
ing the same function in parallel, all of this four times, one after
another.

Benchmark programs are allocation-intensive but they are
thought to be relatively realistic use cases of functional program-
ming, as far as synthetic benchmarks can be; in other words, they
are not limited to allocating at the highest possible rate.

The clone benchmark program consists of a function which
recursively creates a modified copy of a given S-expression in
which all leaves are replaced with deep copies of the whole original
structure; this function is applied to a complete binary tree of depth
11, 10 times.

fact computes 500 times the factorial of 9, representing natural
numbers in radix 1 as lists containing the symbolfoo. Arithmetic
functions are defined recursively as functions on lists.

fibo computes Fibonacci’s33th number using the exponential
recursive definition. Again, natural numbers are implemented as
lists.

sort uses quick-sort to sort a random list of 600000 integers.
Several functions use tail-recursive helpers which create garbage
lists.

prolog is a Prolog interpreter written in functional style which
computes all the permutations of a list of length 9 for the sequential
version, 8 for the parallel version.
Even the synthetic benchmark programs are intended to simulate

29lambda and future create closures with environments implemented
as flat heap arrays containing only the free variables which are actually
used in the body;let andlet* generate local C variables. The non-local
environment is referred via astatic linkand only contains bindings for the
non-locals which are actually bound in the body. No identifier lookup is
performed during execution, as the static scoping rule allows to resolve
any lexical identifier reference at compile time. Calling a function doesnot
allocate heap structures. Mutable cells (in the style of ML’s refs) must be
allocated on the heap.

the dynamic behavior of typical functional programs, generating a
lot of garbage and some alive linear memory structures, of a size
varying according to the program. The Prolog interpreter is a more
realistic symbolic application.

In order to forceepsilonGC to collect more often on the test
machine. we have set the heap to have relatively small fixed sizes.
Apart from thisepsilonGC has been left with its default settings.

Boehm’s collector resizes the heap in an incremental way, which
is clearly visible by the number of collections. Setting the environ-
ment variablesGC INITIAL HEAP SIZE andGC MAXIMUM HEAP SIZE
to 5Gb tends to improves the performance.

The test machine is a Dell Precision T7400 with two quad-core
Intel Xeon (EM64T) chips at 3GHz, 8Gb of RAM and 1.3Ghz
FSB. L1I and L1D are 32K per core, 8-way set-associative. L2s are
6Mb, 24-way set-associative, one perpair of cores; 64-byte cache
lines at both levels. The operating system is a modified debian “un-
stable” GNU/Linux distribution with Linux 2.6.26 and GNU libc
2.7; all the relevant software was compiled in 64-bit mode with
GCC 4.3.2, using the options-O3 -fomit-frame-pointer for
production.
Boehm’s collector is version7.1alpha3-080224, configured with
the options--enable-threads=posix --disable-cplusplus
--enable-parallel-mark --disable-gcj-support
--disable-java-finalization, and run in non-incremental
mode.
Tests were run in single-user mode, with the machine completely
unloaded. OProfile wasnot on during the benchmarking runs, in
order to avoid its overhead in measurements. L2 misses were esti-
mated with the attributeLLC MISSES at resolution 6000.

The complete source code ofepsilonGC, nanolisp and the
benchmark programs is available (at the moment for reviewers
only) at the addresshttp://194.254.173.145/repos/benchmarks.

Scalable BIBOP garbage collection for parallel functional programs on multi-core machines: preprint footer 11 2011/6/14

http://194.254.173.145/repos/benchmarks

epsilonGC (512 Mb) epsilonGC (1024 Mb)
program CPUs mutation roots marking sweeping completion collections# misses mutation roots marking sweeping completion coll.# misses

clone 1 19.30 0.01 2.00 0.15 22.92 11 37.28 19.44 0.00 0.91 0.00 21.32 5 37.13
clone 2 9.88 0.01 2.39 0.10 12.62 13 75.33 10.06 0.01 0.56 0.17 10.95 6 83.04
clone 4 5.12 0.02 2.42 0.06 7.76 15 192.08 5.07 0.01 1.03 0.00 6.27 6 224.08
clone 8 2.80 0.03 2.47 0.00 5.42 19 380.00 2.77 0.01 0.92 0.00 3.75 6 416.71

list-fact 1 175.42 0.09 13.27 0.20 196.81 128 47.47 175.04 0.04 6.18 0.23 184.96 61 48.55
list-fact 2 88.32 0.11 9.15 0.17 98.61 131 99.02 87.96 0.05 4.56 0.22 93.24 62 101.74
list-fact 4 46.06 0.12 8.22 0.10 54.78 139 260.44 46.13 0.06 3.79 0.16 50.28 64 274.94
list-fact 8 25.75 0.15 8.42 0.02 34.54 156 464.36 25.59 0.07 3.51 0.01 29.29 66 518.19
list-fibo 1 34.28 0.01 10.31 0.00 47.97 13 20.92 34.02 0.00 3.49 0.00 39.22 4 20.38
list-fibo 2 17.48 0.02 9.30 0.09 27.64 18 47.52 17.30 0.00 1.73 0.00 19.19 4 41.56
list-fibo 4 9.17 0.03 7.15 0.07 16.62 22 94.12 8.56 0.01 1.43 0.16 10.35 5 118.79
list-fibo 8 4.71 0.06 10.34 0.00 15.85 48 219.77 4.47 0.01 0.90 0.00 5.48 5 201.06

prolog-par 1 36.10 0.02 27.87 0.74 70.85 20 266.16 35.01 0.01 8.04 0.91 48.21 7 130.66
prolog-par 2 18.17 0.04 15.69 0.56 35.22 22 568.04 17.52 0.02 5.91 1.15 24.99 10 339.65
prolog-par 4 9.43 0.07 8.38 0.31 18.51 22 1128.34 8.92 0.03 2.95 0.66 12.90 9 719.63
prolog-par 8 4.88 0.14 5.48 0.43 11.12 24 2343.64 4.61 0.03 0.91 0.04 5.71 5 1061.62
prolog-seq 1 45.53 0.05 65.62 0.14 120.94 31 344.46 42.46 0.01 9.65 0.05 53.66 6 125.28
prolog-seq 2 45.35 0.05 32.97 0.07 79.04 31 496.20 42.53 0.01 4.86 0.04 47.55 6 140.03
prolog-seq 4 45.35 0.05 16.73 0.13 62.61 31 620.76 42.46 0.01 2.45 0.05 45.13 6 146.17
prolog-seq 8 45.46 0.05 9.13 0.13 54.95 31 715.85 42.50 0.01 1.34 0.04 44.06 6 152.92

sort 1 10.71 0.01 2.20 0.00 14.64 8 66.79 10.84 0.00 1.36 0.00 12.91 4 68.51
sort 2 6.06 0.01 2.02 0.00 8.48 10 136.15 5.62 0.00 0.40 0.00 6.17 3 142.06
sort 4 3.08 0.01 1.84 0.00 5.03 11 287.17 3.04 0.01 0.78 0.00 3.90 4 321.27
sort 8 1.71 0.02 1.31 0.00 3.08 12 610.00 1.88 0.01 0.57 0.00 2.54 4 681.85

epsilonGC kindless (1024 Mb) epsilonGC kindless (2048 Mb)
program CPUs mutation roots marking sweeping completion collections# misses mutation roots marking sweeping completion collections# misses

clone 1 21.09 0.01 3.31 0.00 26.49 11 54.83 21.09 0.00 1.59 0.00 23.79 5 62.55
clone 2 11.05 0.01 3.10 0.00 14.41 12 119.87 11.10 0.00 1.24 0.00 12.49 5 130.90
clone 4 5.94 0.01 2.09 0.00 8.20 13 271.21 6.23 0.01 0.97 0.00 7.37 5 342.78
clone 8 3.34 0.03 3.32 0.00 7.00 19 523.19 3.44 0.01 1.10 0.00 4.66 6 640.71

list-fact 1 215.63 0.09 14.50 0.00 239.25 126 86.92 215.45 0.04 6.87 0.00 226.73 60 89.15
list-fact 2 108.72 0.10 11.27 0.00 121.38 129 179.20 108.41 0.05 5.17 0.00 114.24 61 181.65
list-fact 4 61.80 0.11 8.92 0.01 71.00 134 410.70 61.29 0.06 4.04 0.00 65.58 62 425.93
list-fact 8 40.73 0.15 8.86 0.01 49.97 148 652.39 40.85 0.06 3.87 0.01 44.95 65 677.34
list-fibo 1 35.31 0.01 7.91 0.00 45.68 11 36.30 35.14 0.00 3.03 0.00 39.92 4 38.60
list-fibo 2 18.04 0.01 4.35 0.00 22.89 11 74.17 18.00 0.00 1.79 0.00 19.93 4 79.39
list-fibo 4 9.12 0.01 3.32 0.00 12.61 12 179.19 9.26 0.00 1.08 0.00 10.46 4 178.63
list-fibo 8 5.16 0.05 8.50 0.00 14.45 35 359.29 5.00 0.01 1.15 0.00 6.25 5 384.76

prolog-par 1 39.59 0.02 29.38 0.03 73.07 15 351.68 37.69 0.01 9.24 0.01 48.61 5 181.91
prolog-par 2 20.35 0.03 14.66 0.03 35.29 15 712.92 19.42 0.01 4.63 0.01 24.19 5 371.31
prolog-par 4 10.52 0.05 8.30 0.06 19.16 16 1419.77 9.96 0.02 2.40 0.01 12.58 5 745.56
prolog-par 8 5.57 0.09 5.28 0.35 11.56 18 2670.45 5.11 0.03 1.38 0.07 6.76 5 1431.73
prolog-seq 1 49.61 0.04 75.79 0.07 133.76 27 455.56 45.44 0.01 13.54 0.02 60.60 6 204.96
prolog-seq 2 49.33 0.04 37.95 0.04 88.44 27 657.81 45.59 0.01 6.77 0.01 52.52 6 223.17
prolog-seq 4 49.39 0.04 19.71 0.06 69.46 27 841.50 45.72 0.01 3.48 0.01 49.41 6 248.06
prolog-seq 8 49.40 0.04 11.18 0.06 61.26 27 975.03 45.44 0.01 1.95 0.02 47.65 6 255.32

sort 1 13.60 0.01 2.31 0.00 17.71 8 117.28 13.83 0.00 1.62 0.00 16.58 4 130.17
sort 2 6.79 0.01 1.67 0.00 8.68 8 258.26 7.00 0.00 0.58 0.00 7.80 3 251.92
sort 4 3.98 0.01 1.69 0.00 5.84 10 579.93 3.87 0.00 0.59 0.00 4.59 4 585.33
sort 8 2.63 0.02 2.92 0.00 5.70 16 1362.57 2.63 0.01 0.75 0.00 3.51 4 1162.82

Figure 2. Times in seconds, number of collections and cache misses for each benchmark program withepsilonGC. The “misses” columns
is an indexof the number of L2 cache faults in a unit of time. It is obtained by dividing the number of samples reported by OProfile by
the program completion time. The sweep column indicates only the non-deferred part of the sweeping phase: on-demand sweep times are
considered as part of mutation. All the reported times aretotal times, not relative to a single collection.

Scalable BIBOP garbage collection for parallel functional programs on multi-core machines: preprint footer 12 2011/6/14

Boehm (default) Boehm (5Gb Mb)
program CPUs completion collections# misses completion collections# misses

clone 1 36.16 54 873.30 33.86 27 805.23
clone 2 23.21 35 1624.39 23.17 25 1594.23
clone 4 15.21 33 2951.18 14.33 16 2986.56
clone 8 20.40 24 3357.54 20.90 12 3352.52

list-fact 1 324.46 1907 592.69 295.44 190 601.72
list-fact 2 241.41 1316 1333.37 210.07 199 1229.96
list-fact 4 162.65 1027 2284.49 133.40 214 2137.15
list-fact 8 258.52 535 2771.93 238.86 251 2773.76
list-fibo 1 44.67 70 381.72 42.80 15 302.84
list-fibo 2 26.10 61 834.78 25.10 19 732.25
list-fibo 4 15.99 55 1543.68 15.14 17 1474.16
list-fibo 8 14.87 52 2674.62 13.99 16 2707.37
prolog-par 1 54.12 143 891.81 45.40 14 371.64
prolog-par 2 34.66 118 2033.85 27.86 16 1057.73
prolog-par 4 23.14 108 3955.62 19.74 19 2778.06
prolog-par 8 30.64 107 5451.13 27.02 21 4657.34
prolog-seq 1 84.59 111 1595.69 77.58 24 1396.84
prolog-seq 2 73.46 111 1971.13 69.45 24 1682.54
prolog-seq 4 67.75 111 2163.63 65.86 24 1798.50
prolog-seq 8 67.40 111 2250.92 65.17 24 1883.80

sort 1 23.38 85 906.37 19.26 14 685.55
sort 2 17.02 53 1705.43 13.90 14 1439.38
sort 4 12.04 39 3022.95 10.72 20 2637.71
sort 8 17.72 32 3393.33 16.97 17 3427.09

Figure 3. Times with Boehm’s collector

Scalable BIBOP garbage collection for parallel functional programs on multi-core machines: preprint footer 13 2011/6/14

	Introduction
	Motivations
	Objectives
	Contributions

	The functional hypothesis
	The user view: kinds, sources and pumps
	Architecture
	Kinded objects
	BIBOP pages
	Page creation
	Page sweeping
	Page refurbishing
	Page destruction

	Sources
	Pumps
	The allocation function

	Kindless and large objects
	Garbage collection
	Synchronization

	Implementation
	Data density
	Closures
	Lazy and object-oriented languages
	Benchmark
	Evaluation

	Further developments
	Conclusions
	Related work

