
1/15 .

The Commodore 64
GNU epsilon

Demo

Ode to a childhood dream
Cross-compiling GNU epsilon to the Commodore 64

Luca Saiu
positron@gnu.org

http://ageinghacker.net

GNU Project

GNU Hackers’ Meeting 2014
Technische Universität München — Garching, Germany

August 16th 2014

Luca Saiu — positron@gnu.org Ode to a childhood dream

http://ageinghacker.net


2/15 .

The Commodore 64
GNU epsilon

Demo

Hardware overview
Waxing sentimental
Software overview

The Commodore 64 hardware — overview

Luca Saiu — positron@gnu.org Ode to a childhood dream



2/15 .

The Commodore 64
GNU epsilon

Demo

Hardware overview
Waxing sentimental
Software overview

The Commodore 64 hardware — overview

Luca Saiu — positron@gnu.org Ode to a childhood dream



2/15 .

The Commodore 64
GNU epsilon

Demo

Hardware overview
Waxing sentimental
Software overview

The Commodore 64 hardware — overview

Luca Saiu — positron@gnu.org Ode to a childhood dream



2/15 .

The Commodore 64
GNU epsilon

Demo

Hardware overview
Waxing sentimental
Software overview

The Commodore 64 hardware — overview

The VIC-II graphics chip

Luca Saiu — positron@gnu.org Ode to a childhood dream



3/15 .

The Commodore 64
GNU epsilon

Demo

Hardware overview
Waxing sentimental
Software overview

The Commodore 64 hardware — CPU

The CPU is a MOS 6510, essentially identical to the 6502.

A simple design from the late 1970s:
8-bit;
accumulator CPU (A, two index registers X and Y, flags);
no multiplication, no division, no floating-point;
Low frequency:

0.985 MHz (PAL version);
1.023 MHz (NTSC version);

16-bit address bus:
64KB address space, and 64KB RAM
clunky “zeropage” addressing modes, unsuited to pointers;

memory-mapped I/O
(with bank switching);

Luca Saiu — positron@gnu.org Ode to a childhood dream



4/15 .

The Commodore 64
GNU epsilon

Demo

Hardware overview
Waxing sentimental
Software overview

The Commodore 64 hardware — multimedia

SID audio chip (waveform), very nice for its time;

VIC-II video chip:
hardware sprites (good !);
no linear framebuffer (very painful).
addresses 16KB out of the main 64KB memory

bank switching: any one of bank [0, 3].

Luca Saiu — positron@gnu.org Ode to a childhood dream



5/15 .

The Commodore 64
GNU epsilon

Demo

Hardware overview
Waxing sentimental
Software overview

The Commodore 64 hardware — other hardware

Quite reasonable keyboard (the computer is all in the keyboard).

Some hardware extensibility:
Video interface: TV or dedicated monitor
User port
Memory-mapped ROM cartridges
joystick, mouse, modem, printer
secondary storage:

floppy drive
audio cassette interface

Luca Saiu — positron@gnu.org Ode to a childhood dream



6/15 .

The Commodore 64
GNU epsilon

Demo

Hardware overview
Waxing sentimental
Software overview

Motivation

Why all of this?

Luca Saiu — positron@gnu.org Ode to a childhood dream



7/15 .

The Commodore 64
GNU epsilon

Demo

Hardware overview
Waxing sentimental
Software overview

The Commodore 64 — how it “felt”

Commodore 64C (released 1986 — functionally identical to the
1982 model, updated motherboard making it cheaper to produce)

This is the same model I owned (but I had no floppy drive).
Luca Saiu — positron@gnu.org Ode to a childhood dream



8/15 .

The Commodore 64
GNU epsilon

Demo

Hardware overview
Waxing sentimental
Software overview

Commodore 64 system software

KERNAL “operating system” in ROM:
memory-mapped, shadowing the last 8KB of RAM (unless
disabled);

“BASIC V2” interpreter in ROM:
memory-mapped, shadowing 8KB more;
very, very limited: PEEK and POKE;
BASIC starter;

[Little demo]

Luca Saiu — positron@gnu.org Ode to a childhood dream



8/15 .

The Commodore 64
GNU epsilon

Demo

Hardware overview
Waxing sentimental
Software overview

Commodore 64 system software

KERNAL “operating system” in ROM:
memory-mapped, shadowing the last 8KB of RAM (unless
disabled);

“BASIC V2” interpreter in ROM:
memory-mapped, shadowing 8KB more;
very, very limited: PEEK and POKE;
BASIC starter;

[Little demo]

Luca Saiu — positron@gnu.org Ode to a childhood dream



8/15 .

The Commodore 64
GNU epsilon

Demo

Hardware overview
Waxing sentimental
Software overview

Commodore 64 system software

KERNAL “operating system” in ROM:
memory-mapped, shadowing the last 8KB of RAM (unless
disabled);

“BASIC V2” interpreter in ROM:
memory-mapped, shadowing 8KB more;
very, very limited: PEEK and POKE;
BASIC starter;

[Little demo]

Luca Saiu — positron@gnu.org Ode to a childhood dream



9/15 .

The Commodore 64
GNU epsilon

Demo

GNU epsilon quick overview
Compiling epsilon
Challenges in targeting the 6502

Extensible programming language

GNU epsilon:
Extremely small core language ε0

Powerful extension capabilities
automatically rewrite programs into ε0
only have to compile ε0!

Lispy high-level “personality” (but untyped)

Very simple, but little documented:
Tutorial on my blog;
café reports.

[Little demo]

Luca Saiu — positron@gnu.org Ode to a childhood dream



9/15 .

The Commodore 64
GNU epsilon

Demo

GNU epsilon quick overview
Compiling epsilon
Challenges in targeting the 6502

Extensible programming language

GNU epsilon:
Extremely small core language ε0

Powerful extension capabilities
automatically rewrite programs into ε0
only have to compile ε0!

Lispy high-level “personality” (but untyped)

Very simple, but little documented:
Tutorial on my blog;
café reports.

[Little demo]

Luca Saiu — positron@gnu.org Ode to a childhood dream



9/15 .

The Commodore 64
GNU epsilon

Demo

GNU epsilon quick overview
Compiling epsilon
Challenges in targeting the 6502

Extensible programming language

GNU epsilon:
Extremely small core language ε0

Powerful extension capabilities
automatically rewrite programs into ε0
only have to compile ε0!

Lispy high-level “personality” (but untyped)

Very simple, but little documented:
Tutorial on my blog;
café reports.

[Little demo]

Luca Saiu — positron@gnu.org Ode to a childhood dream



10/15 .

The Commodore 64
GNU epsilon

Demo

GNU epsilon quick overview
Compiling epsilon
Challenges in targeting the 6502

Compiling epsilon

How I compile GNU epsilon:
Build some desired global state to compile, by successive
definitions;

Visit the reachable data graph and generate (native) data.

Translate procedure bodies (which are also data) into native
code

At this point procedure bodies are ε0 only — easy compilation!

Luca Saiu — positron@gnu.org Ode to a childhood dream



10/15 .

The Commodore 64
GNU epsilon

Demo

GNU epsilon quick overview
Compiling epsilon
Challenges in targeting the 6502

Compiling epsilon

How I compile GNU epsilon:
Build some desired global state to compile, by successive
definitions;

Visit the reachable data graph and generate (native) data.

Translate procedure bodies (which are also data) into native
code

At this point procedure bodies are ε0 only — easy compilation!

Luca Saiu — positron@gnu.org Ode to a childhood dream



10/15 .

The Commodore 64
GNU epsilon

Demo

GNU epsilon quick overview
Compiling epsilon
Challenges in targeting the 6502

Compiling epsilon

How I compile GNU epsilon:
Build some desired global state to compile, by successive
definitions;

Visit the reachable data graph and generate (native) data.

Translate procedure bodies (which are also data) into native
code

At this point procedure bodies are ε0 only — easy compilation!

Luca Saiu — positron@gnu.org Ode to a childhood dream



11/15 .

The Commodore 64
GNU epsilon

Demo

GNU epsilon quick overview
Compiling epsilon
Challenges in targeting the 6502

6502 assembly: adding 16-bit numbers from epsilon stack

Macro parameters: .fromslot1, .fromslot2, .toslot.
;; Load the first operand low byte.
ldy #(.fromslot1 * 2)
lda (frame_pointer), y
;; Sum to second operand’s first byte, store result.
clc ; Clear carry flag.
ldy #(.fromslot2 * 2)
adc (frame_pointer), y
ldy #(.toslot * 2)
sta (frame_pointer), y
;; Keep the carry bit and work with the high byte.
ldy #(.fromslot1 * 2 + 1)
lda (frame_pointer), y
ldy #(.fromslot2 * 2 + 1)
adc (frame_pointer), y
ldy #(.toslot * 2 + 1)
sta (frame_pointer), y

Luca Saiu — positron@gnu.org Ode to a childhood dream



12/15 .

The Commodore 64
GNU epsilon

Demo

GNU epsilon and cross-compiling demo
Future work

Demo

[demo]

This might be useful if you want to try yourself (c64 branch from
epsilon git):

(e1:load "bootstrap/scheme/scratch-c64-demo.e")
(c (fio:write "foo" (i (fibo 10))))
(c (test-sprites-interactively))

acme –format cbm -o /tmp/q /tmp/q.a && x64 /tmp/q

Luca Saiu — positron@gnu.org Ode to a childhood dream



13/15 .

The Commodore 64
GNU epsilon

Demo

GNU epsilon and cross-compiling demo
Future work

Future work

Make an official epsilon release (including Commodore 64
support);

Don’t compile procedure bodies as data;
...this saves a whopping 30KB on my sprite example!

Use zeropage “registers”:
requires compiler work;

Possibly make a real, elaborate Commodore 64 game.

Luca Saiu — positron@gnu.org Ode to a childhood dream



13/15 .

The Commodore 64
GNU epsilon

Demo

GNU epsilon and cross-compiling demo
Future work

Future work

Make an official epsilon release (including Commodore 64
support);

Don’t compile procedure bodies as data;
...this saves a whopping 30KB on my sprite example!

Use zeropage “registers”:
requires compiler work;

Possibly make a real, elaborate Commodore 64 game.

Luca Saiu — positron@gnu.org Ode to a childhood dream



13/15 .

The Commodore 64
GNU epsilon

Demo

GNU epsilon and cross-compiling demo
Future work

Future work

Make an official epsilon release (including Commodore 64
support);

Don’t compile procedure bodies as data;
...this saves a whopping 30KB on my sprite example!

Use zeropage “registers”:
requires compiler work;

Possibly make a real, elaborate Commodore 64 game.

Luca Saiu — positron@gnu.org Ode to a childhood dream



13/15 .

The Commodore 64
GNU epsilon

Demo

GNU epsilon and cross-compiling demo
Future work

Future work

Make an official epsilon release (including Commodore 64
support);

Don’t compile procedure bodies as data;
...this saves a whopping 30KB on my sprite example!

Use zeropage “registers”:
requires compiler work;

Possibly make a real, elaborate Commodore 64 game.

Luca Saiu — positron@gnu.org Ode to a childhood dream



14/15 .

The Commodore 64
GNU epsilon

Demo

GNU epsilon and cross-compiling demo
Future work

The end

Ode to a childhood dream

Any questions?

Luca Saiu — positron@gnu.org Ode to a childhood dream



15/15 .

The Commodore 64
GNU epsilon

Demo

GNU epsilon and cross-compiling demo
Future work

Image credits

MOS_Technologies_large.jpg by Nixdorf at the English
language Wikipedia. Creative Commons Attribution-Share
Alike 3.0 Unported.
“MOS 6569R3 Video chip from a Commodore 64 main board
(PAL version)” by Christian Taube. This file is licensed under
the Creative Commons Attribution-Share Alike 2.5 Generic
license.
https://en.wikipedia.org/wiki/File:C64c_system.jpg
by Bill Bertram. This file is licensed under the Creative
Commons Attribution-Share Alike 2.5 Generic license.

Luca Saiu — positron@gnu.org Ode to a childhood dream

MOS_Technologies_large.jpg
https://en.wikipedia.org/wiki/File:C64c_system.jpg

	The Commodore 64
	GNU epsilon
	Demo

