GNU epsilon

an extensible programming language

Luca Saiu <saiu@lipn.univ-parisl3.fr>

LIPN, Université Paris 13

SPO Talks — Imperial College, London — 2011-06-20

Luca Saiu <saiu@lipn.univ-paris13.fr> GNU epsilon — an extensible programming language

Introducing myself Who | am and what | do

Ten years in one frame: ¢

Hello, I'm Luca Saiu

| work on programming languages and compilers

Luca Saiu <saiu@lipn.univ-paris13.fr> GNU epsilon — an extensible programming language

Introducing myself Who | am and what | do

Ten years in one frame: ¢

Hello, I'm Luca Saiu

| work on programming languages and compilers
@ Bachelor's and Master's Degrees at the University of Pisa,
Italy...

e met my good friend Carlo Bertolli there
e Marco Vanneschi is one of my great masters

Luca Saiu <saiu@lipn.univ-paris13.fr> GNU epsilon — an extensible programming language

Introducing myself Who | am and what | do

Ten years in one frame: ¢

Hello, I'm Luca Saiu

| work on programming languages and compilers
@ Bachelor's and Master's Degrees at the University of Pisa,
Italy...

e met my good friend Carlo Bertolli there
e Marco Vanneschi is one of my great masters

@ ...now at LIPN, Institut Galilée, Université Paris 13, France:
o Finishing my PhD thesis
o Attaché Temporaire d’Enseignement et Recherche

Luca Saiu <saiu@lipn.univ-paris13.fr> GNU epsilon — an extensible programming language

Introducing myself Who | am and what | do

Ten years in one frame: ¢

Hello, I'm Luca Saiu

| work on programming languages and compilers

@ Bachelor's and Master's Degrees at the University of Pisa,
Italy...

e met my good friend Carlo Bertolli there
e Marco Vanneschi is one of my great masters

@ ...now at LIPN, Institut Galilée, Université Paris 13, France:
o Finishing my PhD thesis
o Attaché Temporaire d’Enseignement et Recherche

@ Free software activist
o GNU maintainer since 2002

Luca Saiu <saiu@lipn.univ-paris13.fr> GNU epsilon — an extensible programming language

Introducing myself Who | am and what | do

Ten years in one frame: ¢

Hello, I'm Luca Saiu

| work on programming languages and compilers

@ Bachelor's and Master's Degrees at the University of Pisa,
Italy...

e met my good friend Carlo Bertolli there
e Marco Vanneschi is one of my great masters

@ ...now at LIPN, Institut Galilée, Université Paris 13, France:

o Finishing my PhD thesis
o Attaché Temporaire d’Enseignement et Recherche

@ Free software activist
o GNU maintainer since 2002

@ Lisper and functional programmer
o Co-wrote Marionnet, in OCaml

Luca Saiu <saiu@lipn.univ-paris13.fr> GNU epsilon — an extensible programming language

Introducing myself

Who | am and what | do
Ten years in one frame

Functional programming in practice: | co-wrote Marionnet

Mariennet
Project Options Help (

Welcome to Marionnet% |

=(i)n

=

ionnet, a virtual network laboratory
Version trunk revne 313 - 2010-11-23 10:56:47 +0100

Copyright (C) 2007. 2008, 2009, 2010 Jean-Vincent Loddo
Copyright (C) 2007, 2008, 2008, 2010 Luc

aiu
Copyright (C) 2007, 2008, 2009, 2010 Université Paris 13

(=

Marionnet comes with absolutely no warranty.
This is free software, covered by the GNU GPL.
You are welcome to redistribute it under certain
condlitions; see the file *COPYING' for details.

(=

uca Saiu <saiu@l

Introducing myself Who | am and what | do

Ten years in one frame: ¢

Quick history of ¢

@ 2001: a toy, my first functional language implementation and
second compiler; static type checking; reference counter; no
[/O; custom virtual machine; all written in C

@ 2002-2005: rewritten from scratch; ML-style; static type
inference; my first two garbage collectors; epsilonlex and
epsilonyacc (bootstrapped); purely functional with 1/0
monad; new custom virtual machine; all written in C;
~ 40,000 LoC; approved as official GNU project in 2002

@ 2006-2007: macros; user-defiend primitives; incomplete

@ 2007-2009: reductionism: kernel based on A-calculus; macros;
user-defiend primitives; incomplete

@ 2010-: reductionism: imperative first-order kernel macros and
transformations; user-defiend primitives; s-expression syntax; =)
advanced OCaml prototype, about to be bootstrapped I @

Luca Saiu <saiu@lipn.univ-parisi3.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at e

Language research

A crude chronology of common programming language features

@ 1960s: structured programming, recursion, symbolic
programming, higher order, garbage collection,
meta-programming, object orientation, concatenative
programming

e 1970s:

@ 1980s:
@ 1990s:
@ 2000s:

Luca Saiu <saiu@lipn.univ-paris13.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at e

Language research

A crude chronology of common programming language features

@ 1960s: structured programming, recursion, symbolic
programming, higher order, garbage collection,
meta-programming, object orientation, concatenative
programming

@ 1970s: first-class continuations, quasiquoting, [type inference

(suggested by Professor Kelly)]

@ 1980s:
@ 1990s:
@ 2000s:

Luca Saiu <saiu@lipn.univ-paris13.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at e

Language research

A crude chronology of common programming language features

@ 1960s: structured programming, recursion, symbolic
programming, higher order, garbage collection,
meta-programming, object orientation, concatenative
programming

@ 1970s: first-class continuations, quasiquoting, [type inference
(suggested by Professor Kelly)]

@ 1980s: logic programming, purely functional programming

@ 1990s:

@ 2000s:

Luca Saiu <saiu@lipn.univ-paris13.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at e

Language research

A crude chronology of common programming language features

@ 1960s: structured programming, recursion, symbolic
programming, higher order, garbage collection,
meta-programming, object orientation, concatenative
programming

@ 1970s: first-class continuations, quasiquoting, [type inference
(suggested by Professor Kelly)]

@ 1980s: logic programming, purely functional programming

@ 1990s: monads in programming; err... components?

@ 2000s:

Luca Saiu <saiu@lipn.univ-paris13.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at e

Language research

A crude chronology of common programming language features

@ 1960s: structured programming, recursion, symbolic
programming, higher order, garbage collection,
meta-programming, object orientation, concatenative
programming

@ 1970s: first-class continuations, quasiquoting, [type inference
(suggested by Professor Kelly)]

@ 1980s: logic programming, purely functional programming

@ 1990s: monads in programming; err... components?

@ 2000s: err...

Luca Saiu <saiu@lipn.univ-paris13.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at e

More Language research would be nice

A crude chronology of common programming language features

@ 1960s: structured programming, recursion, symbolic
programming, higher order, garbage collection,
meta-programming, object orientation, concatenative
programming

@ 1970s: first-class continuations, quasiquoting, [type inference
(suggested by Professor Kelly)]

@ 1980s: logic programming, purely functional programming

@ 1990s: monads in programming; err... components?

@ 2000s: err...

Luca Saiu <saiu@lipn.univ-paris13.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at e

More Language research would be nice

A crude chronology of common programming language features

@ 1960s: structured programming, recursion, symbolic
programming, higher order, garbage collection,
meta-programming, object orientation, concatenative
programming

@ 1970s: first-class continuations, quasiquoting, [type inference
(suggested by Professor Kelly)|

@ 1980s: logic programming, purely functional programming

@ 1990s: monads in programming; err... components?

e 2000s: err...

No, we didn't solve the expressivity problem. Whoever thinks we
did is particularly far from the solution. T=T] N

Luca Saiu <saiu@lipn.univ-paris13.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at e

“Modern” languages aren't expressive enough

@ Program requirements get more and more complex

@ Programs grow, too: ~ 10° LoC is not unusual
@ But languages stopped evolving

e Programs are hard to get right
o Sometimes we do need to prove properties about programs (by
machine, for realistic programs)...
@ ...so we need a formal specification (necessary but not
sufficient)

Luca Saiu <saiu@lipn.univ-parisi3.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at e

“Modern” languages are way too complex for proofs

@ The Definition of Standard ML, Revised Edition, 1997,
128 pp. (very dense formal specification)

o Revised® Report on the Algorithmic Language Scheme, 2007
187 pp. (with a non-normative and partial formal
specification in an appendix)

o Haskell 98 Language and Libraries — The Revised Report,
2003, 270 pp. (no formal specification)

e ISO/IEC 9899:201x Programming languages — C, March 2009
draft, 564 pp. (no formal specification)

@ The Java Language Specification, Third Edition, June 2009,
684 pp. (no formal specification)

o ANSI INCITS 226-1994 (R2004) Common Lisp, 1153 pp. (no
formal specification)

e ISO/IEC 14882: Programming Language C++, June 2009 | &GN
draft, 1326 pp. (no formal specification) '

Luca Saiu <saiu@lipn.univ-parisi3.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at &

The silver bullet, in my opinion

What killer features do we need?

Luca Saiu <saiu@lipn.univ-paris13.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at &

The silver bullet, in my opinion

What killer features do we need?

@ Of course I've got opinions, but in general | don’t know

Luca Saiu <saiu@lipn.univ-paris13.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at &

The silver bullet, in my opinion: reductionism

What killer features do we need?

@ Of course I've got opinions, but in general | don’t know
@ So, delay decisions and let users build the langauge

Luca Saiu <saiu@lipn.univ-paris13.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at &

The silver bullet, in my opinion: reductionism

What killer features do we need?

@ Of course I've got opinions, but in general | don’t know
@ So, delay decisions and let users build the langauge

e Small kernel language
e Syntactic abstraction
o Formal specification

Luca Saiu <saiu@lipn.univ-parisi3.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at &

The silver bullet, in my opinion: reductionism

What killer features do we need?

@ Of course I've got opinions, but in general | don’t know
@ So, delay decisions and let users build the langauge

e Small kernel language
e Syntactic abstraction
o Formal specification

@ We need radical experimentation again!
o Many personalities on top of the same kernel

Luca Saiu <saiu@lipn.univ-parisi3.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at &

A Scheme demo

Have a look at an expressive language (it's not ¢)

Raise your hand if you know some Lisp dialect

[Quick Scheme demo: McCarthy's amb operator, macros and
call/cc|

Luca Saiu <saiu@lipn.univ-parisi3.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at &

Problems | see with Scheme

o High level kernel
o Very hard to compile efficiently and analyze...
e ...you pay for the complexity of call/cc even when you don't
use it
o performance, in some implementations
o intellectual complexity

o Still relatively complex

o Last standard (R®RS, 2007): 187 pages in English
e Too big to have a complete formal specification

Luca Saiu <saiu@lipn.univ-parisi3.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at &

What | call reductionism is not new. Can you recognize this?

“a language design of the old school is a pattern for programs. But
now we need to ‘go meta.” We should now think of a language
design as a pattern for language designs, a tool for making more
tools of the same kind. [...] My point is that a good programmer in
these times does not just write programs. A good programmer
builds a working vocabulary. In other words, a good programmer
does language design, though not from scratch, but by building on
the frame of a base language.”

(my emphasis)

Luca Saiu <saiu@lipn.univ-paris13.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at &

What | call reductionism is not new. Can you recognize this?

“a language design of the old school is a pattern for programs. But
now we need to ‘go meta.” We should now think of a language
design as a pattern for language designs, a tool for making more
tools of the same kind. [...] My point is that a good programmer in
these times does not just write programs. A good programmer
builds a working vocabulary. In other words, a good programmer
does language design, though not from scratch, but by building on
the frame of a base language.”

(my emphasis)

—Guy L. Steele Jr., Growing a Language, 1998

Luca Saiu <saiu@lipn.univ-paris13.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at &

What | call reductionism is not new. Can you recognize this?

“a language design of the old school is a pattern for programs. But
now we need to ‘go meta.” We should now think of a language
design as a pattern for language designs, a tool for making more
tools of the same kind. [...] My point is that a good programmer in
these times does not just write programs. A good programmer
builds a working vocabulary. In other words, a good programmer
does language design, though not from scratch, but by building on
the frame of a base language.”

(my emphasis)

—Guy L. Steele Jr., Growing a Language, 1998

What kernel language did he plan to build on?

Luca Saiu <saiu@lipn.univ-paris13.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at &

What | call reductionism is not new. Can you recognize this?

“a language design of the old school is a pattern for programs. But
now we need to ‘go meta.” We should now think of a language
design as a pattern for language designs, a tool for making more
tools of the same kind. [...] My point is that a good programmer in
these times does not just write programs. A good programmer
builds a working vocabulary. In other words, a good programmer
does language design, though not from scratch, but by building on
the frame of a base language.”

(my emphasis)

—Guy L. Steele Jr., Growing a Language, 1998

What kernel language did he plan to build on? Java (!)

Luca Saiu <saiu@lipn.univ-paris13.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at &

What | call reductionism is not new. Can you recognize this?

“a language design of the old school is a pattern for programs. But
now we need to ‘go meta.” We should now think of a language
design as a pattern for language designs, a tool for making more
tools of the same kind. [...] My point is that a good programmer in
these times does not just write programs. A good programmer
builds a working vocabulary. In other words, a good programmer
does language design, though not from scratch, but by building on
the frame of a base language.”

(my emphasis)

—Guy L. Steele Jr., Growing a Language, 1998

What kernel language did he plan to build on? Java (!)
To Steele’s credit, his later proposals based on Fortress are moHe 7oy
realistic

Luca Saiu <saiu@lipn.univ-parisi3.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at &

Reflection

The program has to be able to reason about itself (*)

Luca Saiu <saiu@lipn.univ-paris13.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at &

Reflection

The program has to be able to reason about itself (*)
@ Good error reporting: failed within the else branch of the
conditional starting at line 35

Luca Saiu <saiu@lipn.univ-parisi3.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at &

Reflection

The program has to be able to reason about itself (*)
@ Good error reporting: failed within the else branch of the
conditional starting at line 35
@ Analyses on the program state
@ unexec
o Checkpointing
o Compiling [the compiler is just a procedure!]

Luca Saiu <saiu@lipn.univ-paris13.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at &

Reflection

The program has to be able to reason about itself (*)
@ Good error reporting: failed within the else branch of the
conditional starting at line 35
@ Analyses on the program state
@ unexec
o Checkpointing
o Compiling [the compiler is just a procedure!]

The program has to be able to update itself (**)

Luca Saiu <saiu@lipn.univ-paris13.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at &

Reflection

The program has to be able to reason about itself (*)
@ Good error reporting: failed within the else branch of the
conditional starting at line 35
@ Analyses on the program state
@ unexec
o Checkpointing
o Compiling [the compiler is just a procedure!]

The program has to be able to update itself (**)
e Transformations a-la-CPS

Luca Saiu <saiu@lipn.univ-paris13.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at &

Reflection

The program has to be able to reason about itself (*)
@ Good error reporting: failed within the else branch of the
conditional starting at line 35
@ Analyses on the program state
@ unexec
o Checkpointing
o Compiling [the compiler is just a procedure!]
The program has to be able to update itself (**)
@ Transformations a-la-CPS
@ Compiler optimizations [my idea: nondeterministic rewrite system, hill-climbing]

Luca Saiu <saiu@lipn.univ-paris13.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at &

Reflection

The program has to be able to reason about itself (*)
@ Good error reporting: failed within the else branch of the
conditional starting at line 35
@ Analyses on the program state
@ unexec

o Checkpointing
o Compiling [the compiler is just a procedure!]

The program has to be able to update itself (**)
@ Transformations a-la-CPS
@ Compiler optimizations [my idea: nondeterministic rewrite system, hill-climbing]
@ Compile-time garbage collection

Luca Saiu <saiu@lipn.univ-paris13.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at &

Reflection

The program has to be able to reason about itself (*)
@ Good error reporting: failed within the else branch of the
conditional starting at line 35
@ Analyses on the program state
@ unexec

o Checkpointing
o Compiling [the compiler is just a procedure!]

The program has to be able to update itself (**)
@ Transformations a-la-CPS
@ Compiler optimizations [my idea: nondeterministic rewrite system, hill-climbing]
@ Compile-time garbage collection

Point (**) is much more delicate

Luca Saiu <saiu@lipn.univ-paris13.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at &

Reflection

The program has to be able to reason about itself (*)
@ Good error reporting: failed within the else branch of the
conditional starting at line 35
@ Analyses on the program state
@ unexec

o Checkpointing
o Compiling [the compiler is just a procedure!]

The program has to be able to update itself (**)
@ Transformations a-la-CPS
@ Compiler optimizations [my idea: nondeterministic rewrite system, hill-climbing]
@ Compile-time garbage collection

Point (**) is much more delicate
@ Use syntax abstraction to rewrite into non-reflective programs
where possible... \ir

o ...otherwise inefficient and unanalyzable (but not an “error”)

Luca Saiu <saiu@lipn.univ-parisi3.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at

€p grammar

This is the complete kernel language grammar:

en=
Xh
c
let x* be e in el

>

|
l
|1
| [primitive m e*]p

| [if e € {c*} then e else €],
| [fork f e*]p

[[oin el

| [oundle e*],

Luca Saiu <saiu@lipn.univ-paris13.fr>

GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at

g0 grammar [This is the kernel language grammar!]

This is the complete kernel language grammar:

en=
Xh
c
let x* be e in el

>

|
l
|1
| [primitive m e*]p

| [if e € {c*} then e else €],
| [fork f e*]p

[[oin el

| [oundle e*],

Luca Saiu <saiu@lipn.univ-paris13.fr>

GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at

Parsing

A predefined parser, for bootstrapping reasons
@ A predefined procedure parses s-expressions (like Scheme,
nothing similar to &)

e Another predefined procedure expands s-expressions into
expressions

@ Macro expansion and transformations, here
o Easy to add new literals (lexicon only)
If you don't like s-expressions, write a new parser!
@ Use the predefined frontend to make another one
e Minimality not so important here: easy to replace

Luca Saiu <saiu@lipn.univ-parisi3.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at

A feel of g9 dynamic semantics: sample rules

G ST —sSIaVT (global-environment)[p] : x — ¢

r(tes (O, leV
([Goin T, 7)S IFOIVT —r S iy | futeres): £ (O, alVy)

Ss Vi T —g S Vi T
SV T —gS VI'[futures, t — (5], V{)]

(futures) : t +— (S¢, Vi)

d (global- i t
Co) SIVT li x ¢ dom(I'(global-environment)[p])

The complete dyanamic semantics for g is two or three pages long-—-

Luca Saiu <saiu@lipn.univ-parisi3.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at

A word against mandatory static checks

@ You aren't always writing software for nuclear power plants,
are you?
@ Programmers know best

e maybe the code is safe but the compiler can't prove it
e maybe we want to test something unrelated to the problem

o |'ll take responsibility if it fails, but let me run the damn thing
@ Refusing to compile or run is not rational

o Silenceable warnings are fine
o (Non-silenceable warnings will be overlooked and essentially
ignored)

Luca Saiu <saiu@lipn.univ-parisi3.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at

“Epiphenomena”

Compilation, optimizations, analyses, ... are not part of the
language
@ But they can be implemented with predefined building blocks
@ A high-level pattern of lower-level objects

o Interesting and useful, but not “fundamental”
e Smaller language!

As an epiphenomenon, when extending ¢ we distinguish:
@ a meta library

@ a personality library

Luca Saiu <saiu@lipn.univ-parisi3.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at

g static semantics: dimension analysis

A form of type inference for g
[Hint at the Math]

Luca Saiu <saiu@lipn.univ-parisi3.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at

My €9 semantics is actually usable

@ The full dynamic sementics of gq fits in a few pages

@ Dimension analysis proved sound with respect to dynamic
semantics

o Well-dimensioned programs do not go wrong

Luca Saiu <saiu@lipn.univ-parisi3.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at

Analyses and personalities

@ Some analyses must be performed on extended languages
(example: type analysis with first-class continuations)
@ Some analyses are better expressed on ...
e Dimension analysis, asymptotic complexity analysis,
termination analysis...
e We don't need the extended forms, so analyzing &g is simple
(example: type inference on pattern matching)

Luca Saiu <saiu@lipn.univ-parisi3.fr> GNU epsilon — an extensible programming language

Mainstream language aren’t sufficient
The £ language Reductionism
A closer look at

€ current status

@ Advanced prototype in (a subset of) OCaml
e To be bootstrapped with CamlIP4

o Parallel garbage collector in C (see my LIPN home page)

@ £o compiler written in (a subset of) OCaml; ANF, liveness
analysis

@ | need to write an extensible scanner in €g (relatively easy)

o Custom virtual machine written in low-level C (threaded code),
native backends easy to add

@ Bootstrapping code: lists, symbols, strings, hash tables..., in
€g ; not that uncomfortable

@ Other bootstrapping code from the previous |mp|ementat|on
based on A-calculus =) G

Luca Saiu <saiu@lipn.univ-parisi3.fr> GNU epsilon — an extensible programming language

Conclusion

About ¢

GNU epsilon is free software, to be released under the GNU GPL.

You're welcome to share and change it under certain conditions;
please see the license text for details.

Luca Saiu <saiu@lipn.univ-parisi3.fr> GNU epsilon — an extensible programming language

Conclusion

Conclusion

@ Reductionism is a viable style of designing and implementing
practical programming languages, leading to solutions which
are easier to extend, experiment with and formally analyze.

@ Strong syntactic abstraction makes easy what is impossible in
other languages

e An overlooked problem: non-Lisp languages are severely

lacking
@ Thanks to reflection we can build language tools as part of the
program
@ Performance doesn’t need to be bad
o I'll have measures soon

Luca Saiu <saiu@lipn.univ-paris13.fr> GNU epsilon — an extensible programming language

Conclusion

Conclusion

@ Reductionism is a viable style of designing and implementing
practical programming languages, leading to solutions which
are easier to extend, experiment with and formally analyze.

@ Strong syntactic abstraction makes easy what is impossible in
other languages

e An overlooked problem: non-Lisp languages are severely

lacking
@ Thanks to reflection we can build language tools as part of the
program
@ Performance doesn’t need to be bad
o I'll have measures soon

Thanks! e

Luca Saiu <saiu@lipn.univ-paris13.fr> GNU epsilon — an extensible programming language

	Introducing myself
	The language
	Conclusion

