
1/37 .

Introduction
Design and implementation

Usage
Conclusion

Multi-runtime OCaml

Luca Saiu
<luca.saiu@inria.fr>

Inria, Gallium team

Conservatoire national des arts et métiers
Paris, 2013-06-24

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


2/37 .

Introduction
Design and implementation

Usage
Conclusion

Introducing myself

Introducing myself

Hello, I'm Luca Saiu, Inria postdoc.

Master's Degree at the University of Pisa;

PhD at Université Paris 13
GNU epsilon (extensible programming language);

it includes a parallel GC, by the way

co-wrote Marionnet (GUI network simulator, in OCaml).

.

I work at Inria Saclay under the supervision of Fabrice Le Fessant,
who started the multi-runtime project.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


3/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

The problem

OCaml should exploit multicore machines for parallel computation. .

.

However, the memory subsystem is a bottleneck:

hardware: the memory wall;

software: OCaml's GC is sequential, yet di�cult to replace:

very fast and low-latency;
static property proofs.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


3/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

The problem

OCaml should exploit multicore machines for parallel computation. .

.

However, the memory subsystem is a bottleneck:

hardware: the memory wall;

software: OCaml's GC is sequential, yet di�cult to replace:

very fast and low-latency;
static property proofs.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


3/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

The problem

OCaml should exploit multicore machines for parallel computation. .

.

However, the memory subsystem is a bottleneck:

hardware: the memory wall;

software: OCaml's GC is sequential, yet di�cult to replace:

very fast and low-latency;
static property proofs.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


4/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

General idea

If we have n cores, run n independent copies of the runtime, one
per core: .

each individual runtime still sequential;

also keep non-parallel OCaml threads;

coordination by message passing;

(and occasionally by shared memory)

don't stop the world.

.

Alter the runtime logic as little as possible.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


5/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

Threads or processes?

What's a �runtime�, to the operating system? Two possibilities: .

.

an OS process:

less portable;
di�cult to share memory;

.

an OS thread:

portable with a simple layer;
easy to selectively share memory;
(hard to debug).

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


5/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

Threads or processes?

What's a �runtime�, to the operating system? Two possibilities: .

.

an OS process:

less portable;
di�cult to share memory;

.

an OS thread:

portable with a simple layer;
easy to selectively share memory;
(hard to debug).

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


5/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

Threads or processes?

What's a �runtime�, to the operating system? Two possibilities: .

.

an OS process:

less portable;
di�cult to share memory;

.

an OS thread:

portable with a simple layer;
easy to selectively share memory;
(hard to debug).

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


5/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

Threads or processes?

What's a �runtime�, to the operating system? Two possibilities: .

.

an OS process:

less portable;
di�cult to share memory;

.

an OS thread:

portable with a simple layer;
easy to selectively share memory;
(hard to debug).

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


6/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

Required changes � 1 / 5

Very extensive (but regular) changes in the C runtime:

global variables become �elds of a large record,
struct caml_global_context;

pass context pointer around;

one more parameter to most C functions.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


7/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

Required changes � 2 / 5

C changes: before...

void caml_process_pending_signals(void){

int i;

if (caml_signals_are_pending) {

caml_signals_are_pending = 0;

for (i = 0; i < NSIG; i++) {

if (caml_pending_signals[i]) {

caml_pending_signals[i] = 0;

caml_execute_signal(i, 0);

}

}

}

}

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


8/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

Required changes � 3 / 5

C changes: after...

void caml_process_pending_signals_r(CAML_R){

int i;

if (caml_signals_are_pending) {

caml_signals_are_pending = 0;

for (i = 0; i < NSIG; i++) {

if (caml_pending_signals[i]) {

caml_pending_signals[i] = 0;

caml_execute_signal_r(ctx, i, 0);

}

}

}

}

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


9/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

Required changes � 4 / 5

From context.h:

#define CAML_R \

caml_global_context *ctx

#define INIT_CAML_R \

CAML_R = caml_get_thread_local_context() /* uses TLS */

#define caml_signals_are_pending \

ctx->caml_signals_are_pending

#define caml_pending_signals \

ctx->caml_pending_signals

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


10/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

Required changes � 5 / 5

Some changes in the assembly part:

reserve one register to hold the context pointer;

(save/restore it when needed)

.

Very minor changes in the compiler:

global OCaml variables are now �contextual�

one dynamic array holding them all

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


10/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

Required changes � 5 / 5

Some changes in the assembly part:

reserve one register to hold the context pointer;

(save/restore it when needed)

.

Very minor changes in the compiler:

global OCaml variables are now �contextual�

one dynamic array holding them all

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


11/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

Consequences of this architecture

Pros:

keep OCaml's GC;

scalability: the sequential GC isn't a bottleneck;

generalization from multicores to networks;

link two ore more libraries with C interface using OCaml
internally.

Cons:

di�cult to debug.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


11/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

Consequences of this architecture

Pros:

keep OCaml's GC;

scalability: the sequential GC isn't a bottleneck;

generalization from multicores to networks;

link two ore more libraries with C interface using OCaml
internally.

Cons:

di�cult to debug.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


11/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

Consequences of this architecture

Pros:

keep OCaml's GC;

scalability: the sequential GC isn't a bottleneck;

generalization from multicores to networks;

link two ore more libraries with C interface using OCaml
internally.

Cons:

di�cult to debug.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


11/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

Consequences of this architecture

Pros:

keep OCaml's GC;

scalability: the sequential GC isn't a bottleneck;

generalization from multicores to networks;

link two ore more libraries with C interface using OCaml
internally.

Cons:

di�cult to debug.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


11/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

Consequences of this architecture

Pros:

keep OCaml's GC;

scalability: the sequential GC isn't a bottleneck;

generalization from multicores to networks;

link two ore more libraries with C interface using OCaml
internally.

Cons:

di�cult to debug.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


12/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

History � 1 / 5

2011: Fabrice Le Fessant starts the project at OCamlPro:

global variables moved into a big struct;
pointer to the big struct added to runtime functions;
assembler changes:

On x86_64, %r13 is now reserved as the context pointer;

everything works on one runtime

except threads and a couple minor otherlibs

patch �le > 23,000 lines
...no more time, project suspended

Late 2012: I arrive at Inria:

study the code;
start porting Fabrice's patch to OCaml svn head...

lots of con�icts

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


12/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

History � 1 / 5

2011: Fabrice Le Fessant starts the project at OCamlPro:

global variables moved into a big struct;
pointer to the big struct added to runtime functions;
assembler changes:

On x86_64, %r13 is now reserved as the context pointer;

everything works on one runtime

except threads and a couple minor otherlibs

patch �le > 23,000 lines
...no more time, project suspended

Late 2012: I arrive at Inria:

study the code;
start porting Fabrice's patch to OCaml svn head...

lots of con�icts

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


12/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

History � 1 / 5

2011: Fabrice Le Fessant starts the project at OCamlPro:

global variables moved into a big struct;
pointer to the big struct added to runtime functions;
assembler changes:

On x86_64, %r13 is now reserved as the context pointer;

everything works on one runtime

except threads and a couple minor otherlibs

patch �le > 23,000 lines
...no more time, project suspended

Late 2012: I arrive at Inria:

study the code;
start porting Fabrice's patch to OCaml svn head...

lots of con�icts

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


13/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

amd64: Fabrice had reserved %r13 for the context pointer

From asmcomp/amd64/proc.ml. See any di�erence? .

.

Mainline in 2011:

(* Conventions:

rax - r11: OCaml function arguments

rax: OCaml and C function results

xmm0 - xmm9: OCaml function arguments

xmm0: OCaml and C function results

Mainline in late 2012:

(* Conventions:

rax - r13: OCaml function arguments

rax: OCaml and C function results

xmm0 - xmm9: OCaml function arguments

xmm0: OCaml and C function results

They changed the register map in the mean time! (PR#5707)
Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


13/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

amd64: Fabrice had reserved %r13 for the context pointer

From asmcomp/amd64/proc.ml. See any di�erence? .

.

Mainline in 2011:

(* Conventions:

rax - r11: OCaml function arguments

rax: OCaml and C function results

xmm0 - xmm9: OCaml function arguments

xmm0: OCaml and C function results

Mainline in late 2012:

(* Conventions:

rax - r13: OCaml function arguments

rax: OCaml and C function results

xmm0 - xmm9: OCaml function arguments

xmm0: OCaml and C function results

They changed the register map in the mean time! (PR#5707)
Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


14/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

History � 2 / 5: I ported Fabrice's work

Lots of nontrivial con�icts in the assembly part. I �xed it very,
very carefully because I couldn't even compile, let alone test;

I �xed con�icts in the C part (many, but mostly trivial);

I scanned the code start-to-�nish, adding the context
parameter to the new part;

Figured out a way to bootstrap: adding a new CAMLprim isn't
trivial with OCaml's build system.

I gradually �xed compilation errors.

Incredibly, hello world ran nearly at the �rst attempt. .

.

After a couple months, my branch was in the state in which Fabrice
had left it, ported to the new svn head.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


14/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

History � 2 / 5: I ported Fabrice's work

Lots of nontrivial con�icts in the assembly part. I �xed it very,
very carefully because I couldn't even compile, let alone test;

I �xed con�icts in the C part (many, but mostly trivial);

I scanned the code start-to-�nish, adding the context
parameter to the new part;

Figured out a way to bootstrap: adding a new CAMLprim isn't
trivial with OCaml's build system.

I gradually �xed compilation errors.

Incredibly, hello world ran nearly at the �rst attempt. .

.

After a couple months, my branch was in the state in which Fabrice
had left it, ported to the new svn head.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


14/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

History � 2 / 5: I ported Fabrice's work

Lots of nontrivial con�icts in the assembly part. I �xed it very,
very carefully because I couldn't even compile, let alone test;

I �xed con�icts in the C part (many, but mostly trivial);

I scanned the code start-to-�nish, adding the context
parameter to the new part;

Figured out a way to bootstrap: adding a new CAMLprim isn't
trivial with OCaml's build system.

I gradually �xed compilation errors.

Incredibly, hello world ran nearly at the �rst attempt. .

.

After a couple months, my branch was in the state in which Fabrice
had left it, ported to the new svn head.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


14/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

History � 2 / 5: I ported Fabrice's work

Lots of nontrivial con�icts in the assembly part. I �xed it very,
very carefully because I couldn't even compile, let alone test;

I �xed con�icts in the C part (many, but mostly trivial);

I scanned the code start-to-�nish, adding the context
parameter to the new part;

Figured out a way to bootstrap: adding a new CAMLprim isn't
trivial with OCaml's build system.

I gradually �xed compilation errors.

Incredibly, hello world ran nearly at the �rst attempt. .

.

After a couple months, my branch was in the state in which Fabrice
had left it, ported to the new svn head.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


14/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

History � 2 / 5: I ported Fabrice's work

Lots of nontrivial con�icts in the assembly part. I �xed it very,
very carefully because I couldn't even compile, let alone test;

I �xed con�icts in the C part (many, but mostly trivial);

I scanned the code start-to-�nish, adding the context
parameter to the new part;

Figured out a way to bootstrap: adding a new CAMLprim isn't
trivial with OCaml's build system.

I gradually �xed compilation errors.

Incredibly, hello world ran nearly at the �rst attempt. .

.

After a couple months, my branch was in the state in which Fabrice
had left it, ported to the new svn head.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


15/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

History � 3 / 5: I moved OCaml globals to contexts

We need a separate copy of OCaml globals per context, possibly to
add dynamically, after context creation (about one month):

C part quite easy:
de�ned an extensible bu�er in C;
added an extensible bu�er �eld to struct

caml_global_context, made it a GC root;
general solution, for C contextual variables as well.

ocamlopt changes not very hard either (but I didn't know its
internals):

now the compiler generates just a word to be �lled with a
variable o�set for the compilation unit (following a suggestion
by Fabrice)
I made a couple other minor changes in ocamlopt, needed to
propagate information

asmcomp/amd64/emit.mlp: I added indirection to global
accesses (currently two levels: optimizable to one)

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


15/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

History � 3 / 5: I moved OCaml globals to contexts

We need a separate copy of OCaml globals per context, possibly to
add dynamically, after context creation (about one month):

C part quite easy:
de�ned an extensible bu�er in C;
added an extensible bu�er �eld to struct

caml_global_context, made it a GC root;
general solution, for C contextual variables as well.

ocamlopt changes not very hard either (but I didn't know its
internals):

now the compiler generates just a word to be �lled with a
variable o�set for the compilation unit (following a suggestion
by Fabrice)
I made a couple other minor changes in ocamlopt, needed to
propagate information

asmcomp/amd64/emit.mlp: I added indirection to global
accesses (currently two levels: optimizable to one)

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


15/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

History � 3 / 5: I moved OCaml globals to contexts

We need a separate copy of OCaml globals per context, possibly to
add dynamically, after context creation (about one month):

C part quite easy:
de�ned an extensible bu�er in C;
added an extensible bu�er �eld to struct

caml_global_context, made it a GC root;
general solution, for C contextual variables as well.

ocamlopt changes not very hard either (but I didn't know its
internals):

now the compiler generates just a word to be �lled with a
variable o�set for the compilation unit (following a suggestion
by Fabrice)
I made a couple other minor changes in ocamlopt, needed to
propagate information

asmcomp/amd64/emit.mlp: I added indirection to global
accesses (currently two levels: optimizable to one)

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


16/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

How to access a global

An access to the second global (o�set 8) of the module Q on
amd64 GNU/Linux (PIC):

before:

movq camlQ@GOTPCREL(%rip), %rax # load Q's address

movq 8(%rax), %rax # dereference the second word

after:

movq camlQ@GOTPCREL(%rip), %rax # load Q's offset address

movq (%rax), %rax # load Q's offset

addq 56(%r13), %rax # globals + offset = Q's address

movq 8(%rax), %rax # dereference the second word

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


16/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

How to access a global

An access to the second global (o�set 8) of the module Q on
amd64 GNU/Linux (PIC):

before:

movq camlQ@GOTPCREL(%rip), %rax # load Q's address

movq 8(%rax), %rax # dereference the second word

after:

movq camlQ@GOTPCREL(%rip), %rax # load Q's offset address

movq (%rax), %rax # load Q's offset

addq 56(%r13), %rax # globals + offset = Q's address

movq 8(%rax), %rax # dereference the second word

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


17/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

History � 4 / 5: context split

I implemented the context split operator. .

.

Somewhat inspired by my PhD thesis work (�unexec�, �3). From C:

make a Caml tuple containing all globals plus the function to
run

serialize it into a bu�er (which preserves sharing)
in each new thread:

deserialize the bu�er
set the global variables
run the function

Generalized marshalling to serialize channels (at least stdin,
stdout and stderr!). .

.

Hard to get right. I was also guilty of naïve premature
optimization in a couple cases.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


17/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

History � 4 / 5: context split

I implemented the context split operator. .

.

Somewhat inspired by my PhD thesis work (�unexec�, �3). From C:

make a Caml tuple containing all globals plus the function to
run

serialize it into a bu�er (which preserves sharing)
in each new thread:

deserialize the bu�er
set the global variables
run the function

Generalized marshalling to serialize channels (at least stdin,
stdout and stderr!). .

.

Hard to get right. I was also guilty of naïve premature
optimization in a couple cases.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


17/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

History � 4 / 5: context split

I implemented the context split operator. .

.

Somewhat inspired by my PhD thesis work (�unexec�, �3). From C:

make a Caml tuple containing all globals plus the function to
run

serialize it into a bu�er (which preserves sharing)
in each new thread:

deserialize the bu�er
set the global variables
run the function

Generalized marshalling to serialize channels (at least stdin,
stdout and stderr!). .

.

Hard to get right. I was also guilty of naïve premature
optimization in a couple cases.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


18/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

History � 5 / 5

Implemented communication operators

Made otherlibs/systhreads support the multi-runtime:
multi-runtime + (non-parallel)multi-thread

still chasing the last bugs

Fixed context splitting on bytecode

.

In all such cases:

relatively little coding time;

debugging is very di�cult.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


18/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

History � 5 / 5

Implemented communication operators

Made otherlibs/systhreads support the multi-runtime:
multi-runtime + (non-parallel)multi-thread

still chasing the last bugs

Fixed context splitting on bytecode

.

In all such cases:

relatively little coding time;

debugging is very di�cult.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


19/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

Challenges � 1 / 2

Since the GC is moving, heaps must be disjoint:

No Caml pointers from one context to another context heap!

If I violate this condition by mistake, I get problems which are
extremely painful to debug.

pointed data changes for apparently no reason;

crash when following an invalid pointer (if I'm lucky);

very non-deterministic;
crashes usually far from their cause, in space and time:

patiently debug with prints, gdb, valgrind and deductive
reasoning.

I sprinkle my code with forced collections, to intentionally cause
such crashes by stressing the system.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


19/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

Challenges � 1 / 2

Since the GC is moving, heaps must be disjoint:

No Caml pointers from one context to another context heap!

If I violate this condition by mistake, I get problems which are
extremely painful to debug.

pointed data changes for apparently no reason;

crash when following an invalid pointer (if I'm lucky);

very non-deterministic;
crashes usually far from their cause, in space and time:

patiently debug with prints, gdb, valgrind and deductive
reasoning.

I sprinkle my code with forced collections, to intentionally cause
such crashes by stressing the system.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


19/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

Challenges � 1 / 2

Since the GC is moving, heaps must be disjoint:

No Caml pointers from one context to another context heap!

If I violate this condition by mistake, I get problems which are
extremely painful to debug.

pointed data changes for apparently no reason;

crash when following an invalid pointer (if I'm lucky);

very non-deterministic;
crashes usually far from their cause, in space and time:

patiently debug with prints, gdb, valgrind and deductive
reasoning.

I sprinkle my code with forced collections, to intentionally cause
such crashes by stressing the system.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


20/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

Challenges � 2 / 2

Debugging is di�cult:

I occasionally forgot to protect local C variables of type value
from the GC, with
CAMLparamX/CAMLlocalX/CAMLreturnX ;

same disaster as above.

once I spent several weeks chasing a single bug in the assembly
code, which trashed the context pointer when returning from
Caml code to C code:

the cause: a missing conversion from words to bytes in an
assembly macro

/* Load global [srclabel] in register [dstreg]. */

#define POP_VAR(dstlabel) \

popq dstlabel*8(%r13)

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


20/37 .

Introduction
Design and implementation

Usage
Conclusion

High-level architecture
History: development and challenges

Challenges � 2 / 2

Debugging is di�cult:

I occasionally forgot to protect local C variables of type value
from the GC, with
CAMLparamX/CAMLlocalX/CAMLreturnX ;

same disaster as above.

once I spent several weeks chasing a single bug in the assembly
code, which trashed the context pointer when returning from
Caml code to C code:

the cause: a missing conversion from words to bytes in an
assembly macro

/* Load global [srclabel] in register [dstreg]. */

#define POP_VAR(dstlabel) \

popq dstlabel*8(%r13)

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


21/37 .

Introduction
Design and implementation

Usage
Conclusion

Low-level (unsafe) interface
A high-level interface: actors
An experimental high-level interface sample: skeletons

OCaml interface � split

The main primitive from stdlib/context.mli:

type t (* Abstract *)

val split_into_context_array :

int -> (int -> unit)

-> (t array)

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


22/37 .

Introduction
Design and implementation

Usage
Conclusion

Low-level (unsafe) interface
A high-level interface: actors
An experimental high-level interface sample: skeletons

Communication model

Fabrice suggested me to look at Erlang and Scala for inspiration... .

.

...I wasn't too impressed:
[To do: somebody reminded me that my solution doesn't treat failure in the same elaborate way. That's

correct: here I'm just speaking about the general communication model.]

a �process� also serves as a mailbox;
as a common idiom they dispatch on a message �eld, in
practice simulating multiple mailboxes.

In my mind repeating code patterns ≡ insu�cient abstraction. .

.

I extended the model (a simple idea: probably it occurred to
somebody else as well).
Mailboxes:

are a separate type;
can be sent as messages, à-la-π-calculus.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


22/37 .

Introduction
Design and implementation

Usage
Conclusion

Low-level (unsafe) interface
A high-level interface: actors
An experimental high-level interface sample: skeletons

Communication model

Fabrice suggested me to look at Erlang and Scala for inspiration... .

.

...I wasn't too impressed:
[To do: somebody reminded me that my solution doesn't treat failure in the same elaborate way. That's

correct: here I'm just speaking about the general communication model.]

a �process� also serves as a mailbox;
as a common idiom they dispatch on a message �eld, in
practice simulating multiple mailboxes.

In my mind repeating code patterns ≡ insu�cient abstraction. .

.

I extended the model (a simple idea: probably it occurred to
somebody else as well).
Mailboxes:

are a separate type;
can be sent as messages, à-la-π-calculus.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


22/37 .

Introduction
Design and implementation

Usage
Conclusion

Low-level (unsafe) interface
A high-level interface: actors
An experimental high-level interface sample: skeletons

Communication model

Fabrice suggested me to look at Erlang and Scala for inspiration... .

.

...I wasn't too impressed:
[To do: somebody reminded me that my solution doesn't treat failure in the same elaborate way. That's

correct: here I'm just speaking about the general communication model.]

a �process� also serves as a mailbox;
as a common idiom they dispatch on a message �eld, in
practice simulating multiple mailboxes.

In my mind repeating code patterns ≡ insu�cient abstraction. .

.

I extended the model (a simple idea: probably it occurred to
somebody else as well).
Mailboxes:

are a separate type;
can be sent as messages, à-la-π-calculus.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


22/37 .

Introduction
Design and implementation

Usage
Conclusion

Low-level (unsafe) interface
A high-level interface: actors
An experimental high-level interface sample: skeletons

Communication model

Fabrice suggested me to look at Erlang and Scala for inspiration... .

.

...I wasn't too impressed:
[To do: somebody reminded me that my solution doesn't treat failure in the same elaborate way. That's

correct: here I'm just speaking about the general communication model.]

a �process� also serves as a mailbox;
as a common idiom they dispatch on a message �eld, in
practice simulating multiple mailboxes.

In my mind repeating code patterns ≡ insu�cient abstraction. .

.

I extended the model (a simple idea: probably it occurred to
somebody else as well).
Mailboxes:

are a separate type;
can be sent as messages, à-la-π-calculus.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


23/37 .

Introduction
Design and implementation

Usage
Conclusion

Low-level (unsafe) interface
A high-level interface: actors
An experimental high-level interface sample: skeletons

Low-level OCaml interface � mailboxes

From stdlib/context.mli:

type mailbox (* abstract *)

val make_mailbox : unit -> mailbox

val send : mailbox -> 'a -> unit

val receive : mailbox -> 'a (* unsafe *)

Restricting a mailbox to a single type would be very constraining. .

.

Relatively easy to implement, with marshalling and synchronization;
LIFO. .

.

Just a good simple layer on which to build higher-level

interfaces.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


24/37 .

Introduction
Design and implementation

Usage
Conclusion

Low-level (unsafe) interface
A high-level interface: actors
An experimental high-level interface sample: skeletons

A more comfortable split

Friendlier split functions using mailboxes, implemented in OCaml:

val split1 :

(mailbox -> unit)

-> (*new context mailbox*)mailbox

val split_into_mailbox_list :

int -> (int -> mailbox -> unit)

-> (*mailboxes to new contexts*)(mailbox list)

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


25/37 .

Introduction
Design and implementation

Usage
Conclusion

Low-level (unsafe) interface
A high-level interface: actors
An experimental high-level interface sample: skeletons

�Conservative� high-level interface: actors

We can have a simple safe layer implemented on top of the
low-level interface.

type message =

| Int of int

| String of string

| Float of float

| Pair of message * message

| Mailbox of mailbox

| ...

val send : mailbox -> message -> unit

val receive : mailbox -> message

Pro: trivial to generalize to communication over sockets.
Not implemented yet, but easy.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


26/37 .

Introduction
Design and implementation

Usage
Conclusion

Low-level (unsafe) interface
A high-level interface: actors
An experimental high-level interface sample: skeletons

Algorithmic skeletons � 1 / 3

A skeleton instance consumes objects, computes something and
produces results:

type 'a sink = 'a -> unit

type 'a source = unit -> 'a

type ('a, 'b) instantiated_skeleton =

('a sink) * ('b source)

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


26/37 .

Introduction
Design and implementation

Usage
Conclusion

Low-level (unsafe) interface
A high-level interface: actors
An experimental high-level interface sample: skeletons

Algorithmic skeletons � 1 / 3

A skeleton instance consumes objects, computes something and
produces results:

type 'a sink = 'a -> unit

type 'a source = unit -> 'a

type ('a, 'b) instantiated_skeleton =

('a sink) * ('b source)

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


27/37 .

Introduction
Design and implementation

Usage
Conclusion

Low-level (unsafe) interface
A high-level interface: actors
An experimental high-level interface sample: skeletons

Algorithmic skeletons � 2 / 3

The opportunity for parallelization comes from streams:

Results exit in the same order as the arguments entered, but
(hopefully) at a faster rate.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


28/37 .

Introduction
Design and implementation

Usage
Conclusion

Low-level (unsafe) interface
A high-level interface: actors
An experimental high-level interface sample: skeletons

Algorithmic skeletons � 3 / 3

A skeleton is a (potentially) parallel computation not yet allocated
on cores.

type ('input, 'output) skeleton (* abstract *)

.

.

Instantiate a skeleton on the available cores:

val instantiate : (('a, 'b) skeleton) ->

(('a, 'b) instantiated_skeleton)

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


29/37 .

Introduction
Design and implementation

Usage
Conclusion

Low-level (unsafe) interface
A high-level interface: actors
An experimental high-level interface sample: skeletons

Trivial skeleton

Turn an OCaml function into a (non-parallel) skeleton:

val trivial :

('a -> 'b)

-> (('a, 'b) skeleton)

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


30/37 .

Introduction
Design and implementation

Usage
Conclusion

Low-level (unsafe) interface
A high-level interface: actors
An experimental high-level interface sample: skeletons

Pipeline skeleton

Compose two skeletons into one pipeline skeleton:

val pipeline :

(('a, 'b) skeleton) -> (('b, 'c) skeleton)

-> (('a, 'c) skeleton)

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


31/37 .

Introduction
Design and implementation

Usage
Conclusion

Low-level (unsafe) interface
A high-level interface: actors
An experimental high-level interface sample: skeletons

Taskfarm skeleton

Compose n skeletons into one taskfarm skeleton:

val task_farm :

int -> (('a, 'b) skeleton)

-> (('a, 'b) skeleton)

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


32/37 .

Introduction
Design and implementation

Usage
Conclusion

Low-level (unsafe) interface
A high-level interface: actors
An experimental high-level interface sample: skeletons

Tentative high-level interface example � 1 / 2

The Computer Language Shootout at
benchmarksgame.alioth.debian.org

contains an OCaml program to
generate a Mandelbrot set
approximation as a PNM �le. .

.

The problem: parallelize it for
multicores.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

benchmarksgame.alioth.debian.org
github.com/lucasaiu/ocaml


33/37 .

Introduction
Design and implementation

Usage
Conclusion

Low-level (unsafe) interface
A high-level interface: actors
An experimental high-level interface sample: skeletons

Tentative high-level interface example � 2 / 2

Embarrassingly parallel:

generate di�erent horizontal
stripes in parallel

.

Yet not completely trivial: looks:

�black� areas are slower to �ll:
we need auto-balancing

taskfarm skeleton

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


33/37 .

Introduction
Design and implementation

Usage
Conclusion

Low-level (unsafe) interface
A high-level interface: actors
An experimental high-level interface sample: skeletons

Tentative high-level interface example � 2 / 2

Embarrassingly parallel:

generate di�erent horizontal
stripes in parallel

.

Yet not completely trivial: looks:

�black� areas are slower to �ll:
we need auto-balancing

taskfarm skeleton

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


33/37 .

Introduction
Design and implementation

Usage
Conclusion

Low-level (unsafe) interface
A high-level interface: actors
An experimental high-level interface sample: skeletons

Tentative high-level interface example � 2 / 2

Embarrassingly parallel:

generate di�erent horizontal
stripes in parallel

.

Yet not completely trivial: looks:

�black� areas are slower to �ll:
we need auto-balancing

taskfarm skeleton

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


34/37 .

Introduction
Design and implementation

Usage
Conclusion

Low-level (unsafe) interface
A high-level interface: actors
An experimental high-level interface sample: skeletons

Live demo

[Live demo]

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


35/37 .

Introduction
Design and implementation

Usage
Conclusion

Status
Future developments

Status

The code is available on https://github.com/lucasaiu/ocaml.

It's polluted with my debug prints everywhere; after solving
the last crashes, I'll clean it up.

It works reliably when not using OCaml threads, with bytecode
and with native code on amd64 GNU/Linux.

Sequential performance is good: no more than 5 ∼ 10%
overhead.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

https://github.com/lucasaiu/ocaml
github.com/lucasaiu/ocaml


36/37 .

Introduction
Design and implementation

Usage
Conclusion

Status
Future developments

Future developments

In the short term I will:

�x the last multi-context + multi-thread bugs;

restore C API compatibility using C preprocessor macros;

support C libraries;

update the con�guration system to support (with one context
only) all the other architectures;

In the longer term we'd like to:

add an �ancient� generation for data to share among runtimes
(either read-only and immortal, or hand-managed);

decide on a high-level communication interfaces;

we'd love to see this integrated into the mainline;

port the multi-runtime system to the other architectures
where performance is important.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


36/37 .

Introduction
Design and implementation

Usage
Conclusion

Status
Future developments

Future developments

In the short term I will:

�x the last multi-context + multi-thread bugs;

restore C API compatibility using C preprocessor macros;

support C libraries;

update the con�guration system to support (with one context
only) all the other architectures;

In the longer term we'd like to:

add an �ancient� generation for data to share among runtimes
(either read-only and immortal, or hand-managed);

decide on a high-level communication interfaces;

we'd love to see this integrated into the mainline;

port the multi-runtime system to the other architectures
where performance is important.

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

github.com/lucasaiu/ocaml


37/37 .

Introduction
Design and implementation

Usage
Conclusion

Status
Future developments

Thanks

Thanks!

https://github.com/lucasaiu/ocaml

Luca Saiu � luca.saiu@inria.fr Multi-runtime OCaml � github.com/lucasaiu/ocaml

https://github.com/lucasaiu/ocaml
github.com/lucasaiu/ocaml

	Introduction
	Design and implementation
	Usage
	Conclusion

