GNU epsilon

an extensible programming language

Luca Saiu
<positron@gnu.org>

LIPN, Université Paris 13

PhD defense — Villetaneuse, 2012-11-19

Advisors: C. Fouqueré, J.-V. Loddo
Reviewers: E. Chailloux, M. Mauny

Jury: R. Di Cosmo, M. Serrano, B. Starynkevitch, P. Van Roy —__ ~
w

1/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

Motivations Mainstream languages aren’t sufficient

Reductionism

We want more expressive languages

A crude chronology of programming language features:

@ 1960s: structured programming, recursion, symbolic
programming, higher order, garbage collection,
meta-programming, object orientation, concatenative
programming

@ 1970s: relational programming, first-class continuations,
quasiquoting, type inference

@ 1980s:

@ 1990s:
@ 2000s:

T

2/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

Motivations Mainstream languages aren’t sufficient

Reductionism

We want more expressive languages

A crude chronology of programming language features:

@ 1960s: structured programming, recursion, symbolic
programming, higher order, garbage collection,
meta-programming, object orientation, concatenative
programming

@ 1970s: relational programming, first-class continuations,
quasiquoting, type inference

@ 1980s: logic programming, constraint programming, purely
functional programming

@ 1990s: monads in programming; err... components?

@ 2000s: err...

=7 ‘@5)
We should work harder to improve expressivity. uﬁfj o

2/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

Motivations Mainstream languages aren’t sufficient

Reductionism

“Modern” languages aren't expressive enough

@ Program requirements get more and more complex

@ Programs grow, too: ~ 10° LoC is not unusual
@ But languages don’t evolve fast enough

e Programs are hard to get right
o Sometimes we do need to prove properties about programs (by
machine, for realistic programs)...
o ...so we need formal specifications for languages (necessary
but not sufficient)

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

Motivations Mainstream languages aren’t sufficient

Reductionism

“Modern” languages are way too complex for proofs

@ The Definition of Standard ML, Revised Edition, 1997,
128 pp. (very dense formal specification)

o Revised® Report on the Algorithmic Language Scheme, 2007
187 pp.; R"RS-WGL, 20137, ~88 pp. (non-normative and
partial formal specification in an appendix)

o Haskell 98 Language and Libraries — The Revised Report,
2003, 270 pp. (no formal specification)

e ISO/IEC 9899:201x Programming languages — C, March 2009
draft, 564 pp. (no formal specification)

@ The Java Language Specification, Third Edition, June 2009,
684 pp. (no formal specification)

o ANSI INCITS 226-1994 (R2004) Common Lisp, 1153 pp. (no
formal specification)

e ISO/IEC 14882:2011: Programming Language C++, Qﬁ??” 2N
1324 pp. as per the N3337 draft (no formal specification) ™ 41/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

Motivations . , o
Mainstream languages aren’t sufficient

Reductionism

The silver bullet in my opinion: reductionism

What killer features do we need?

@ Of course I've got opinions, but in general | don’t know
@ So, delay decisions and let users build the language

e Small core language
e Syntactic abstraction
o Formal specification

@ We need radical experimentation again!
o Many personalities on top of the same core language

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

Motivations . , o
Mainstream languages aren’t sufficient

Reductionism

Minimalistic, extensible languages: Scheme [and Forth]

Programming languages should be designed not by piling feature on
top of feature, but by removing the weaknesses and restrictions that
make additional features appear necessary. Scheme demonstrates
that a very small number of rules for forming expressions, with no
restrictions on how they are composed, suffice to form a practical
and efficient programming language that is flexible enough to
support most of the major programming paradigms in use today.

Revised’ Report on the Algorithmic Language Scheme
i € [3..6] — 1980s-2007

T

6/33

Sample extension: McCarthy's amb backtracking operator

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

Motivations . , o
Mainstream languages aren’t sufficient

Reductionism

Problems | see with Scheme

e High-level core

o higher-order, closures, continuations
e hard to compile efficiently and analyze...
e ...you pay for the complexity of call/cc even when you don't
use It
o performance, in some implementations
o intellectual complexity
o Still relatively complex
o Latest official standard (R°RS, 2007): 187 pages in English
o R’RS WG1 will be smaller: 88 pages as of November 2012

e Too big to have a complete formal specification

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

Motivations . , o
Mainstream languages aren’t sufficient

Reductionism

The reductionism idea is not new.

“a language design of the old school is a pattern for programs. But
now we need to ‘go meta.” We should now think of a language
design as a pattern for language designs, a tool for making more
tools of the same kind. [...] My point is that a good programmer in
these times does not just write programs. A good programmer
builds a working vocabulary. In other words, a good programmer
does language design, though not from scratch, but by building on
the frame of a base language.”

[my emphasis]

T

8/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

Motivations . , o
Mainstream languages aren’t sufficient

Reductionism

The reductionism idea is not new.

“a language design of the old school is a pattern for programs. But
now we need to ‘go meta.” We should now think of a language
design as a pattern for language designs, a tool for making more
tools of the same kind. [...] My point is that a good programmer in
these times does not just write programs. A good programmer
builds a working vocabulary. In other words, a good programmer
does language design, though not from scratch, but by building on
the frame of a base language.”

[my emphasis]

—Guy L. Steele Jr., Growing a Language, 1998

T

8/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

Motivations . , o
Mainstream languages aren’t sufficient

Reductionism

The reductionism idea is not new.

“a language design of the old school is a pattern for programs. But
now we need to ‘go meta.” We should now think of a language
design as a pattern for language designs, a tool for making more
tools of the same kind. [...] My point is that a good programmer in
these times does not just write programs. A good programmer
builds a working vocabulary. In other words, a good programmer
does language design, though not from scratch, but by building on
the frame of a base language.”

[my emphasis]

—Guy L. Steele Jr., Growing a Language, 1998

He planned to build on Java (!)
To Steele’s credit, his later proposals based on Fortress are Qﬁ%ﬁ @

more realistic.

8/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

Motivations . , o
Mainstream languages aren’t sufficient

Reductionism

Reflection (1/2: self-analysis)

The program has to be able to (1) access its own dynamic state:
@ Analyses on the program state:

o self-analysis: in the style of static analyses (for example type
inference);

o “unexec” operation: dump the current dynamic state (to
files, sockets...) — definable as an ordinary procedure;

e compilation — definable as an ordinary procedure

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

Motivations . , o
Mainstream languages aren’t sufficient

Reductionism

Reflection (2/2: self-modification)

The program has to be able to (2) update its own state, including
procedures, «a chaud»:
@ Transformations a-la-CPS
e Code optimizations [my idea: nondeterministic rewrite system,
hill-climbing]

@ «Compile-time» garbage collection

Point (2) is more delicate

@ Use syntax abstraction to rewrite into non-self-modifying
programs where possible...

o ...otherwise inefficient and unanalyzable (but not an “error”)

izl

10/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

The core language o
The 1 personality

The £¢ and ;3 languages

Our core language ¢

We call our core language ¢g.

o is a first-order imperative language of global recursive
procedures, with threads. Here's its complete grammar:
e =
Xh

| <h

| [Let x* be e in €]y

| [call x e*]p

| [primitive x e*]p

| [if e € {c*} then e else €],

| [fork x e*]p

[[join el

| [bundle e*]

Luca Saiu — positron@gnu.org

GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

The core language o
The 1 personality

The £¢ and ;3 languages

Our core Ianguage €0 [This is the core language grammar!]

We call our core language ¢g.

o is a first-order imperative language of global recursive
procedures, with threads. Here's its complete grammar:
e =
Xh

| <h

| [Let x* be e in €]y

| [call x e*]p

| [primitive x e*]p

| [if e € {c*} then e else €],

| [fork x e*]p

[[join el

| [bundle e*]

Luca Saiu — positron@gnu.org

GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

The core language o

The co and < languages The 1 personality

Why € has no side effects or definitions

The g9 grammar lacks explicit side effect and definition operators.
Our “initial state” (globals, primitives, procedures, memory, ...) will
allow:
@ memory side effects by primitives
e store is a primitive among load, allocate, ...
@ global and procedure definitions by procedures
o Global tables for globals and procedures, in memory

So, programs can self~-modify:

o if a program doesn't, it can be compiled more efficiently

T

12/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

The core language o

The co and < languages The 1 personality

A feel of g9 dynamic semantics: sample rules

([call f en,..-€n,]hg> £)-S IV T —f (eny, p)...(€n,. p).([call f Oy, @).5 iV T

([bundle O]p,, p).S eplcn_1l.2c2icltV T —F S epen_t...coecnlV T

I - (), e
([Goin Ol -5 T T g 5 gy T oo 70 (00160

The full dynamic semantics of ¢q fits in two pages; three if we also

include failure semantics.
el RN

13/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

The core language o

The co and < languages The 1 personality

My g9 semantics is actually usable

e Formally developed “dimension analysis”, as a sample static
analysis on ¢g programs — a form of type inference

T S

o) 1] 2 (3] (4] 5] 6]

\\\J—///

@ Dimension analysis proved sound with respect to dynamic

semantics:
izl

14/33

“well-dimensioned programs do not go wrong”

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

The core language g

The £¢ and ;3 languages Wit = ey

User syntax: by s-expressions

Lisp-style s-expressions are a data structure convenient for encoding
syntax.

o A “list" structure:

(average x 10)

T

15/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

The core language g

The £¢ and ;3 languages Wit = ey

User syntax: by s-expressions

Lisp-style s-expressions are a data structure convenient for encoding
syntax.

e A "list” structure:
(average x 10)
@ The same structure, making conses explicit:

(average . (x . (10 . O)))

T

15/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

The core language g

The £¢ and ;3 languages Wit = ey

User syntax: by s-expressions

Lisp-style s-expressions are a data structure convenient for encoding
syntax.

e A "list” structure:
(average x 10)
@ The same structure, making conses explicit:
(average . (x . (10 . O)))

@ The same structure, graphically:

average <—El?

X

10

A

T

15/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

The core language g

The £¢ and ;3 languages Wit = ey

Expansion of s-expressions into &g expressions (1/2)

A trivial encoding for gg syntax into s-expressions.

We use the s-expression

form name

——
(e0:if-in x (1 4 6) 10 50)

sub-forms

to represent the ¢ conditional expression

[if xp, € {1,4,6} then 104, else 504,]4,

for some fresh handles hy, hy, hs, hy. Qﬁ%ﬁ @

16/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

The core language g

The £¢ and ;3 languages Wit = ey

Expansion of s-expressions into &g expressions (2/2)

Default case, if the first element is not a form name:

We use the s-expression

operator
(average x 10)
—

operands

to represent the ey procedure call
[call average xp, 104,]p,
for some fresh handles hy, ho, hs.

T

17/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

The core language g

The £¢ and ;3 languages Wit = ey

Extension mechanisms

Even with side effects and definitions, £q is inconvenient to use
directly.

We introduce two syntactic extension mechanisms:
@ a macro rewrites an s-expression into an expression

e [in case you're wondering: not homoiconic, unlike Lisp]
e “local”: it cannot access its surrounding s-expression

@ a transform rewrites an expression into another expression
o “global” syntactic abstraction (example: Closure Conversion)

T

18/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

N R The core language g
The £¢ and ;3 languages The 1 personality

Sample macroexpansion (s-expression to &)

User-defined forms can also be encoded as s-expressions.
a single name

An example with the sequential composition macro el:begin:
(el:begin
(string:write "The result is ")
(fixnum:write n)
(string:write "\n"))
=

[Let () be [call string:write "The result is "p,]p, in
let be [call string:write np.|p. in [call string:write "\n"p,|n a4 |5
g 6115 g \ 81N71N4 1M

for some fresh handles hl, hz, h3, I‘147 hs7 hG, h7, hs.

GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

Luca Saiu — positron@gnu.org

savannah.gnu.org/bzr/?group=epsilon

The core language g

The £¢ and ;3 languages Wit = ey

A sample macro definition

A definition of el:begin, as a quite simple (recursive) macro:

(el:define-macro (el:begin first-form . more-forms)
(e0:if-in (sexpression:null? more-forms) (#t)
first-form
‘(e0:1let () ,first-form
(el:begin , (sexpression:car more-forms)
,@(sexpression:cdr more-forms)))))

In case you're wondering:

@ quasiquote is itself a macro; quasiquoting (like quoting) yields an
expression

@ el:define-macro is itself a macro, built on
el:destructuring-bind, yet another macro

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

The core language g

The £¢ and ;3 languages Wit = ey

Transforms (a-1a-CPS)

Expression-to-expression rewriting, to be applied to all toplevel
forms from a certain point on, or to the whole program.

@ define an ordinary procedure turning an expression into
another expression

@ “install” it so that it is automatically applied from now on
(possibly even retroactively, as for CPS)

Ask me later if you want more details [presentation part 4]

T

21/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

The core language g

The £¢ and ;3 languages Wit = ey

The 1 personality

Also including the syntax we've just shown, the e personality is a
set of extensions to conveniently write other personalities.

@ S-expression syntax a-la-Lisp
@ macroexpansion and transforms

@ many general-purpose syntactic forms to make the user’s life
easier

€1 as a programming language:
o Lispy feel; low-level, potentially efficient

e untyped (not even dynamically-typed)

T

22/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

The core language g

The £¢ and ;3 languages Wit = ey

| implemented 1 on top of &g

I implemented €1 in gq :
o | defined the macroexpansion and transformation machinery
in €0
@ then g7 syntactic forms, by macros and transforms

e expressivity grows fast: | can use an extension to build the
next one

T

23/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

The core language g

The £¢ and ;3 languages Wit = ey

Main &1 forms (defined over gy) (1/2)

Just showing syntactic construct names:

el:begin, el:if, el:when, el:unless, el:and, el:or,
el:cond, sexpression:quote, sexpression:quasiquote,
el:quote, el:quasiquote, el:destructuring-bind,
el:define-macro, el:define, list:list,
sexpression:list, el:case, el:letx,
variadic:call-left-deep, variadic:call-right-deep,
variadic:call-associative, variadic:define-left-deep,
variadic:define-right-deep,
variadic:define-associative, fixnum:+, fixnum:-,
fixnum:* [variadic versions], el:beginl, el:begin2 ...
el:begin-2, el:value-list, tuple:make

tuple:explode, tuple:with, ... U@iﬁi]gé;g

24/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

The core language g

The £¢ and ;3 languages Wit = ey

Main &; forms (defined over gy) (2/2)

set-as-list:make, set-as-list:union,
set-as-list:intersection, set-as-list:subtraction,
record:define, sum:define, sum:define-open,
sum:extend-open, el:lambda, closure:ml-lambda,
el:call-closure, el:named-let, el:do, el:while,
el:dolist, el:dotimes, el:for, el:let [including named let],
el:future, el:join, unexec:unexec, el:match [ML-style
pattern matching].

e Notice that we included closures (el1:1lambda).

T

25/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

The core language g

The £¢ and ;3 languages Wit = ey

Some &7 forms are defined with transforms

Some code-to-code transformations depend on the context.
@ Closure-conversion
e expression non-locals depend on context
e First-class continuations with e1:call/cc (experimental)

o inherently global: CPS-transformed expressions are
incompatible with untransformed ones

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

The core language g

The £¢ and ;3 languages Wit = ey

Bootstrap: implementing 1/eq

€o syntax encoded by s-expressions: using Guile Scheme, plus C for
primitives.
@ Data structures as untyped memory buffers, with pointers
e primitives to allocate, load, store
@ s-expression as a data structure: “open” sum type;
o expressions (themselves an open sum!) as one case;

@ Reliance on the s-expression parser from Guile's frontend

Bootstrapping final step:
@ Unexec
@ exec into a different runtime implementation

(final data representation more efficient than Guile's) QE?T @

27/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

The core language g

The £¢ and ;3 languages Wit = ey

Back to soundness proofs: €1 properties

The static semantics we proved sound was on &g.

How to do soundness proofs on &1 (or higher-level personalities):
@ provide informal “abstract syntax” for £; forms and mappings
to g9. Example:
o [[begin en]s] =
ﬂeh1ﬂ
° II[begin €hy €hy .- ehn]h]] =
[let <> be [[ehl]] in ﬂ[begin €hy +e- eh"]h/]]]h//
@ Use properties on ¢y forms as lemmas for properties on 1
forms

Just an idea for future work. lﬁ?ﬂ @

28/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

Status and conclusion

Parallel garbage collector

Memory management may be a bottleneck in high-level parallel
programs
o parallel mark-sweep, conservative pointer finding, no safe
points
e BiBOP, efficient for programs where most heap-allocated
objects have one of a few shapes

@ scales well on multi-cores, on micro-benchmarks (8 cores)
@ nontrivial — 5000 lines of (heavily commented) C

@ currently not generational
e promising as the old generation of a generation system

T

29/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

Status and conclusion

GNU epsilon project: current status

bootstrapped from Guile Scheme
o now | only use Guile for its s-expression parser/printer

three different runtimes: untagged, tagged, based on Guile
go interpreter in itself (slow), in C (fast)

unexec

closure-conversion as a transform

e unexpected uses: imperative loops, friendly syntax with
nonlocals for futures and unexec

@ experimental CPS transform

T

30/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

Status and conclusion

GNU epsilon project: short-term developments

Developed but not integrated yet:
@ parallel BiBOP collector
o another garbage collector, sequential semispace [suitable as the
young generation when joined];
@ prototype compiler;
e extensible scanner (in OCaml; partial translator to
maintainable ¢1);
@ custom virtual machine written in low-level C
(threaded code), native backends easy to add;

T

31/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

Status and conclusion

About ¢

http://www.gnu.org/software/epsilon

GNU epsilon is free software, released under the GNU GPL version
3 or later.

You're welcome to share and change it under certain conditions;

please see the license text for details.
e

32/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

http://www.gnu.org/software/epsilon
savannah.gnu.org/bzr/?group=epsilon

Status and conclusion

Conclusion

@ Reductionism is a viable style of designing and implementing
practical programming languages, leading to solutions which
are easier to extend, experiment with and formally analyze.

@ Strong syntactic abstraction makes easy what is impossible in
other languages

@ Thanks to reflection we can build language tools as part of the
program

@ Performance doesn't need to be bad

T

33/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

Status and conclusion

Conclusion

@ Reductionism is a viable style of designing and implementing
practical programming languages, leading to solutions which
are easier to extend, experiment with and formally analyze.

@ Strong syntactic abstraction makes easy what is impossible in
other languages

@ Thanks to reflection we can build language tools as part of the
program
@ Performance doesn't need to be bad

Thank you

— thanks to LIPN and Université Paris 13 as well, for
having supported me in this endeavor Qﬁgj@

33/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

Backup slides

@ A transform definition in (some) detail
@ Add new expression cases, and their syntax
@ Define ordinary procedures
@ Install transform procedures

© Approximated tombstone diagrams
@ Interpreters
@ Runtimes
@ Unexec

T

34/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

Add new expression cases, and their syntax
Define ordinary procedures
Install transform procedures

A transform definition in (some) detail

Sample transform (1/5: add new expression cases)

(sum:extend-open e0:expression
(lambda handle formals body)
(call-closure handle closure-expression actuals))

;3 Define "builder" procedures like for ¢£p expression cases:
(el:define (el:lambda* formals body)
(e0:expression-lambda (e0:fresh-handle) formals body))
(el:define (el:call-closure* closure-expression actuals)
(e0:expression-call-closure (e0:fresh-handle)
closure-expression
actuals))

In case you're wondering:
@ expressions are a sum type a-la-ML, open to new cases (like exn in

OCaml)
@ sum types definition and extension operators are macros... s = =
o ultimately just untyped memory structures: integers, uﬁ%iT @
pointers to buffers - ;5/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

Add new expression cases, and their syntax
Define ordinary procedures
Install transform procedures

A transform definition in (some) detail

Sample transform (2/5: add new expression case syntax)

The macro for our new forms will call the builder procedures at
macroexpansion time:

(el:define-macro (el:lambda formals . body-forms)
(sexpression:inject-expression
(el:lambda* (sexpression:eject-symbols formals)
(el:macroexpand ¢(el:begin ,@body-forms)))))

(el:define-macro (el:call-closure closure-expression . actuals)
(sexpression:inject-expression
(el:call-closure* (el:macroexpand closure-expression)
(el:macroexpand-sexpressions actuals))))

In case you're wondering:

@ injection and ejection convert to and from s-expressions. Qﬁ%iT @

36/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

Add new expression cases, and their syntax
Define ordinary procedures
Install transform procedures

A transform definition in (some) detail

Sample transform (3/5: ordinary recursive procedure)

(el:define (closure-convert expression bound-variables)
(el:match expression
((e0:variable x)
(e0:variable* x))
((e0:let let-variables bound-expression body)
(e0:1let* let-variables
(closure-convert bound-expression
bound-variables)
(closure-convert body
(set:union bound-variables
let-variables))))
53 ... the actually interesting cases

))

In case you're wondering:
@ el:match is a macro (quite long, but no transforms are needed

) = = o)
@ expressions are an ordinary sum type a-la-ML uﬁ%«T @

@ sum types a-la-ML are defined with macros... N

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

Add new expression cases, and their syntax
Define ordinary procedures
Install transform procedures

A transform definition in (some) detail

Sample transform (4/5: transform procedures)

Again ordinary procedure definitions, with the good “types”.

(el:define (closure-convert-expression expression)
(closure-convert expression set:empty))

(el:define (closure-convert-procedure name formals body)
(e0:bundle name
formals
(closure-convert body
formals)))

T

38/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

Add new expression cases, and their syntax
Define ordinary procedures
Install transform procedures

A transform definition in (some) detail

Sample transform (5/5: install)

(transform:prepend-expression-transform!
(e0:value closure-convert-expression))

(transform:prepend-procedure-transform!
(e0:value closure-convert-procedure))

From now on we can execute el:lambda and el:call-closure.

In case you're wondering:

@ Some transforms have to be applied retroactively (ex.: CPS)

@ transform:transform-retroactively!

T

39/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

Approximated tombstone diagrams

Interpreters
Runtimes
Unexec

Tombstone diagrams: interpreters

Bootstrap ¢g interpreter, gq interpreter in C:

€0

Guile

€1 implementation:

€1

€0

Luca Saiu — positron@gnu.org

€0

T

40/33

GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

Interpreters
Runtimes

Approximated tombstone diagrams Unexec

Tombstone diagrams: runtimes

Guile runtime, efficient runtime:

dmp dmp

Guile C

T

41/33

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

Interpreters
Runtimes

Approximated tombstone diagrams Unexec

Tombstone diagrams: unexec

Unexec:

€1 €1

€0 €0 — dmp |dmp

€0

€0

¢1 is built on top of g¢ by side effects, as a program. An interactive
REPL is also effectively a program.

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

	Motivations
	The "7122 0 and "7122 1 languages
	Status and conclusion
	Appendix
	A transform definition in (some) detail
	Approximated tombstone diagrams

