
1/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

GNU epsilon
an extensible programming language

Luca Saiu
<positron@gnu.org>

LIPN, Université Paris 13

PhD defense — Villetaneuse, 2012-11-19
.

Advisors: C. Fouqueré, J.-V. Loddo
Reviewers: E. Chailloux, M. Mauny

Jury : R. Di Cosmo, M. Serrano, B. Starynkevitch, P. Van Roy

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


2/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

Mainstream languages aren’t sufficient
Reductionism

We want more expressive languages

A crude chronology of programming language features:
1960s: structured programming, recursion, symbolic
programming, higher order, garbage collection,
meta-programming, object orientation, concatenative
programming
1970s: relational programming, first-class continuations,
quasiquoting, type inference
1980s:

logic programming, constraint programming, purely
functional programming

1990s:

monads in programming; err... components?

2000s:

err...

hack

We should work harder to improve expressivity.

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


2/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

Mainstream languages aren’t sufficient
Reductionism

We want more expressive languages

A crude chronology of programming language features:
1960s: structured programming, recursion, symbolic
programming, higher order, garbage collection,
meta-programming, object orientation, concatenative
programming
1970s: relational programming, first-class continuations,
quasiquoting, type inference
1980s: logic programming, constraint programming, purely
functional programming
1990s: monads in programming; err... components?
2000s: err...

hack
We should work harder to improve expressivity.

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


3/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

Mainstream languages aren’t sufficient
Reductionism

“Modern” languages aren’t expressive enough

Program requirements get more and more complex
Programs grow, too: ∼ 106 LoC is not unusual
But languages don’t evolve fast enough

Programs are hard to get right
Sometimes we do need to prove properties about programs (by
machine, for realistic programs)...

...so we need formal specifications for languages (necessary
but not sufficient)

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


4/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

Mainstream languages aren’t sufficient
Reductionism

“Modern” languages are way too complex for proofs

The Definition of Standard ML, Revised Edition, 1997,
128 pp. (very dense formal specification)
Revised6 Report on the Algorithmic Language Scheme, 2007
187 pp.; R7RS-WG1, 2013?, ∼88 pp. (non-normative and
partial formal specification in an appendix)
Haskell 98 Language and Libraries – The Revised Report,
2003, 270 pp. (no formal specification)
ISO/IEC 9899:201x Programming languages – C, March 2009
draft, 564 pp. (no formal specification)
The Java Language Specification, Third Edition, June 2009,
684 pp. (no formal specification)
ANSI INCITS 226-1994 (R2004) Common Lisp, 1153 pp. (no
formal specification)
ISO/IEC 14882:2011: Programming Language C++,
1324 pp. as per the N3337 draft (no formal specification)

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


5/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

Mainstream languages aren’t sufficient
Reductionism

The silver bullet in my opinion: reductionism

What killer features do we need?
Of course I’ve got opinions, but in general I don’t know
So, delay decisions and let users build the language

Small core language
Syntactic abstraction
Formal specification

We need radical experimentation again!
Many personalities on top of the same core language

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


6/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

Mainstream languages aren’t sufficient
Reductionism

Minimalistic, extensible languages: Scheme [and Forth]

Programming languages should be designed not by piling feature on
top of feature, but by removing the weaknesses and restrictions that
make additional features appear necessary. Scheme demonstrates
that a very small number of rules for forming expressions, with no
restrictions on how they are composed, suffice to form a practical
and efficient programming language that is flexible enough to
support most of the major programming paradigms in use today.

Revisedi Report on the Algorithmic Language Scheme
i ∈ [3..6] — 1980s-2007

Sample extension: McCarthy’s amb backtracking operator

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


7/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

Mainstream languages aren’t sufficient
Reductionism

Problems I see with Scheme

High-level core
higher-order, closures, continuations
hard to compile efficiently and analyze...
...you pay for the complexity of call/cc even when you don’t
use it

performance, in some implementations
intellectual complexity

Still relatively complex
Latest official standard (R6RS, 2007): 187 pages in English

R7RS WG1 will be smaller: 88 pages as of November 2012

Too big to have a complete formal specification

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


8/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

Mainstream languages aren’t sufficient
Reductionism

The reductionism idea is not new.

“a language design of the old school is a pattern for programs. But
now we need to ‘go meta.’ We should now think of a language
design as a pattern for language designs, a tool for making more
tools of the same kind. [...] My point is that a good programmer in
these times does not just write programs. A good programmer
builds a working vocabulary. In other words, a good programmer
does language design, though not from scratch, but by building on
the frame of a base language.” .

[my emphasis] .

—Guy L. Steele Jr., Growing a Language, 1998

He planned to build on Java (!)
To Steele’s credit, his later proposals based on Fortress are
more realistic.

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


8/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

Mainstream languages aren’t sufficient
Reductionism

The reductionism idea is not new.

“a language design of the old school is a pattern for programs. But
now we need to ‘go meta.’ We should now think of a language
design as a pattern for language designs, a tool for making more
tools of the same kind. [...] My point is that a good programmer in
these times does not just write programs. A good programmer
builds a working vocabulary. In other words, a good programmer
does language design, though not from scratch, but by building on
the frame of a base language.” .

[my emphasis] .

—Guy L. Steele Jr., Growing a Language, 1998

He planned to build on Java (!)
To Steele’s credit, his later proposals based on Fortress are
more realistic.

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


8/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

Mainstream languages aren’t sufficient
Reductionism

The reductionism idea is not new.

“a language design of the old school is a pattern for programs. But
now we need to ‘go meta.’ We should now think of a language
design as a pattern for language designs, a tool for making more
tools of the same kind. [...] My point is that a good programmer in
these times does not just write programs. A good programmer
builds a working vocabulary. In other words, a good programmer
does language design, though not from scratch, but by building on
the frame of a base language.” .

[my emphasis] .

—Guy L. Steele Jr., Growing a Language, 1998

He planned to build on Java (!)
To Steele’s credit, his later proposals based on Fortress are
more realistic.

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


9/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

Mainstream languages aren’t sufficient
Reductionism

Reflection (1/2: self-analysis)

The program has to be able to (1) access its own dynamic state:
Analyses on the program state:

self-analysis: in the style of static analyses (for example type
inference);
“unexec” operation: dump the current dynamic state (to
files, sockets...) — definable as an ordinary procedure;
compilation — definable as an ordinary procedure

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


10/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

Mainstream languages aren’t sufficient
Reductionism

Reflection (2/2: self-modification)

The program has to be able to (2) update its own state, including
procedures, «à chaud»:

Transformations à-la-CPS
Code optimizations [my idea: nondeterministic rewrite system,
hill-climbing]

«Compile-time» garbage collection
.
Point (2) is more delicate

Use syntax abstraction to rewrite into non-self-modifying
programs where possible...

...otherwise inefficient and unanalyzable (but not an “error”)

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


11/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

The core language ε0
The ε1 personality

Our core language ε0

[This is the core language grammar!]

We call our core language ε0.
hack the world
ε0 is a first-order imperative language of global recursive
procedures, with threads. Here’s its complete grammar:
e ::=
hack!| xh
hack!| ch
hack!| [let x∗ be e in e]h
hack!| [call x e∗]h
hack!| [primitive x e∗]h
hack!| [if e ∈ {c∗} then e else e]h
hack!| [fork x e∗]h
hack!| [join e]h
hack!| [bundle e∗]h

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


11/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

The core language ε0
The ε1 personality

Our core language ε0 [This is the core language grammar!]

We call our core language ε0.
hack the world
ε0 is a first-order imperative language of global recursive
procedures, with threads. Here’s its complete grammar:
e ::=
hack!| xh
hack!| ch
hack!| [let x∗ be e in e]h
hack!| [call x e∗]h
hack!| [primitive x e∗]h
hack!| [if e ∈ {c∗} then e else e]h
hack!| [fork x e∗]h
hack!| [join e]h
hack!| [bundle e∗]h

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


12/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

The core language ε0
The ε1 personality

Why ε0 has no side effects or definitions

The ε0 grammar lacks explicit side effect and definition operators.
Our “initial state” (globals, primitives, procedures, memory, ...) will
allow:

memory side effects by primitives
store is a primitive among load, allocate, ...

global and procedure definitions by procedures
Global tables for globals and procedures, in memory

hack the world
So, programs can self-modify :

if a program doesn’t, it can be compiled more efficiently

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


13/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

The core language ε0
The ε1 personality

A feel of ε0 dynamic semantics: sample rules

The full dynamic semantics of ε0 fits in two pages; three if we also
include failure semantics.

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


14/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

The core language ε0
The ε1 personality

My ε0 semantics is actually usable

Formally developed “dimension analysis”, as a sample static
analysis on ε0 programs — a form of type inference

>

hack b0c b1c b2c b3c b4c b5c b6c ...

⊥

Dimension analysis proved sound with respect to dynamic
semantics:

“well-dimensioned programs do not go wrong ”

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


15/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

The core language ε0
The ε1 personality

User syntax: by s-expressions

Lisp-style s-expressions are a data structure convenient for encoding
syntax.

A “list” structure:

(average x 10)

The same structure, making conses explicit:

(average . (x . (10 . ())))

The same structure, graphically:

average

x

10

()

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


15/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

The core language ε0
The ε1 personality

User syntax: by s-expressions

Lisp-style s-expressions are a data structure convenient for encoding
syntax.

A “list” structure:

(average x 10)

The same structure, making conses explicit:

(average . (x . (10 . ())))

The same structure, graphically:

average

x

10

()

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


15/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

The core language ε0
The ε1 personality

User syntax: by s-expressions

Lisp-style s-expressions are a data structure convenient for encoding
syntax.

A “list” structure:

(average x 10)

The same structure, making conses explicit:

(average . (x . (10 . ())))

The same structure, graphically:

average

x

10

()

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


16/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

The core language ε0
The ε1 personality

Expansion of s-expressions into ε0 expressions (1/2)

A trivial encoding for ε0 syntax into s-expressions. .

.

We use the s-expression

(

form name
hkkkkikkkkj

e0:if-in x (1 4 6) 10 50loooooooooomoooooooooon

sub-forms

)

to represent the ε0 conditional expression

[if xh2 ∈ {1, 4, 6} then 10h3 else 50h4 ]h1

for some fresh handles h1, h2, h3, h4.

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


17/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

The core language ε0
The ε1 personality

Expansion of s-expressions into ε0 expressions (2/2)

Default case, if the first element is not a form name: .

.

We use the s-expression

(
operator
hkkkikkkj

average x 10loomoon

operands

)

to represent the ε0 procedure call

[call average xh2 10h3 ]h1

for some fresh handles h1, h2, h3.

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


18/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

The core language ε0
The ε1 personality

Extension mechanisms

Even with side effects and definitions, ε0 is inconvenient to use
directly.
hack the world
We introduce two syntactic extension mechanisms:

a macro rewrites an s-expression into an expression
[in case you’re wondering: not homoiconic, unlike Lisp]
“local”: it cannot access its surrounding s-expression

a transform rewrites an expression into another expression
“global” syntactic abstraction (example: Closure Conversion)

hack the world

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


19/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

The core language ε0
The ε1 personality

Sample macroexpansion (s-expression to ε0)

User-defined forms can also be encoded as s-expressions.

An example with the sequential composition macro

a single name
hkkkkikkkkj

e1:begin :

(e1:begin
(string:write "The result is ")
(fixnum:write n)
(string:write "\n"))

⇒
[let 〈〉 be [call string:write "The result is "h3 ]h2 in
[let 〈〉 be [call string:write nh6 ]h5 in [call string:write "\n"h8 ]h7 ]h4 ]h1

hack
for some fresh handles h1, h2, h3, h4, h5, h6, h7, h8.

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


20/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

The core language ε0
The ε1 personality

A sample macro definition

A definition of e1:begin, as a quite simple (recursive) macro: .

.

(e1:define-macro (e1:begin first-form . more-forms)
(e0:if-in (sexpression:null? more-forms) (#t)

first-form
‘(e0:let () ,first-form

(e1:begin ,(sexpression:car more-forms)
,@(sexpression:cdr more-forms)))))

.

In case you’re wondering:

quasiquote is itself a macro; quasiquoting (like quoting) yields an
expression

e1:define-macro is itself a macro, built on
e1:destructuring-bind, yet another macro

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


21/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

The core language ε0
The ε1 personality

Transforms (à-la-CPS)

Expression-to-expression rewriting, to be applied to all toplevel
forms from a certain point on, or to the whole program.

define an ordinary procedure turning an expression into
another expression
“install” it so that it is automatically applied from now on
(possibly even retroactively, as for CPS)

Ask me later if you want more details [presentation part 4]

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


22/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

The core language ε0
The ε1 personality

The ε1 personality

Also including the syntax we’ve just shown, the ε1 personality is a
set of extensions to conveniently write other personalities.

S-expression syntax à-la-Lisp
macroexpansion and transforms
many general-purpose syntactic forms to make the user’s life
easier

ε1 as a programming language:
Lispy feel; low-level, potentially efficient
untyped (not even dynamically-typed)

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


23/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

The core language ε0
The ε1 personality

I implemented ε1 on top of ε0

I implemented ε1 in ε0 :
I defined the macroexpansion and transformation machinery
in ε0

then ε1 syntactic forms, by macros and transforms
expressivity grows fast: I can use an extension to build the
next one

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


24/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

The core language ε0
The ε1 personality

Main ε1 forms (defined over ε0) (1/2)

Just showing syntactic construct names:
.
e1:begin, e1:if, e1:when, e1:unless, e1:and, e1:or,
e1:cond, sexpression:quote, sexpression:quasiquote,
e1:quote, e1:quasiquote, e1:destructuring-bind,
e1:define-macro, e1:define, list:list,
sexpression:list, e1:case, e1:let*,
variadic:call-left-deep, variadic:call-right-deep,
variadic:call-associative, variadic:define-left-deep,
variadic:define-right-deep,
variadic:define-associative, fixnum:+, fixnum:-,
fixnum:* [variadic versions], e1:begin1, e1:begin2 ...
e1:begin-2, e1:value-list, tuple:make,
tuple:explode, tuple:with, ...

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


25/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

The core language ε0
The ε1 personality

Main ε1 forms (defined over ε0) (2/2)

...,
set-as-list:make, set-as-list:union,
set-as-list:intersection, set-as-list:subtraction,
record:define, sum:define, sum:define-open,
sum:extend-open, e1:lambda, closure:ml-lambda,
e1:call-closure, e1:named-let, e1:do, e1:while,
e1:dolist, e1:dotimes, e1:for, e1:let [including named let],
e1:future, e1:join, unexec:unexec, e1:match [ML-style
pattern matching].
.

Notice that we included closures (e1:lambda).

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


26/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

The core language ε0
The ε1 personality

Some ε1 forms are defined with transforms

Some code-to-code transformations depend on the context.
Closure-conversion

expression non-locals depend on context
First-class continuations with e1:call/cc (experimental)

inherently global : CPS-transformed expressions are
incompatible with untransformed ones

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


27/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

The core language ε0
The ε1 personality

Bootstrap: implementing ε1/ε0

ε0 syntax encoded by s-expressions: using Guile Scheme, plus C for
primitives.

Data structures as untyped memory buffers, with pointers
primitives to allocate, load, store

s-expression as a data structure: “open” sum type;
expressions (themselves an open sum!) as one case;

Reliance on the s-expression parser from Guile’s frontend .

.

Bootstrapping final step:
Unexec
exec into a different runtime implementation

(final data representation more efficient than Guile’s)

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


28/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

The core language ε0
The ε1 personality

Back to soundness proofs: ε1 properties

The static semantics we proved sound was on ε0.
.
How to do soundness proofs on ε1 (or higher-level personalities):

provide informal “abstract syntax” for ε1 forms and mappings
to ε0. Example:

[[[begin eh1 ]h]] =
q[[eh1 ]]
[[[begin eh1 eh2 ... ehn ]h]] =
q [let 〈〉 be [[eh1 ]] in [[[begin eh2 ... ehn ]h′ ]]]h′′

Use properties on ε0 forms as lemmas for properties on ε1
forms

hack the world
Just an idea for future work.

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


29/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

Parallel garbage collector

Memory management may be a bottleneck in high-level parallel
programs

parallel mark-sweep, conservative pointer finding, no safe
points
BiBOP, efficient for programs where most heap-allocated
objects have one of a few shapes
scales well on multi-cores, on micro-benchmarks (8 cores)
nontrivial — 5000 lines of (heavily commented) C
currently not generational

promising as the old generation of a generation system

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


30/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

GNU epsilon project: current status

bootstrapped from Guile Scheme
now I only use Guile for its s-expression parser/printer

three different runtimes: untagged, tagged, based on Guile
ε0 interpreter in itself (slow), in C (fast)
unexec
closure-conversion as a transform

unexpected uses: imperative loops, friendly syntax with
nonlocals for futures and unexec

experimental CPS transform

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


31/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

GNU epsilon project: short-term developments

Developed but not integrated yet:
parallel BiBOP collector

another garbage collector, sequential semispace [suitable as the
young generation when joined];

prototype compiler;
extensible scanner (in OCaml; partial translator to
maintainable ε1);
custom virtual machine written in low-level C
(threaded code), native backends easy to add;

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


32/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

About ε

http://www.gnu.org/software/epsilon

.

.

GNU epsilon is free software, released under the GNU GPL version
3 or later. .

.

You’re welcome to share and change it under certain conditions;
please see the license text for details.

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

http://www.gnu.org/software/epsilon
savannah.gnu.org/bzr/?group=epsilon


33/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

Conclusion

Reductionism is a viable style of designing and implementing
practical programming languages, leading to solutions which
are easier to extend, experiment with and formally analyze.
Strong syntactic abstraction makes easy what is impossible in
other languages
Thanks to reflection we can build language tools as part of the
program
Performance doesn’t need to be bad

Thank you
.

— thanks to LIPN and Université Paris 13 as well, for
having supported me in this endeavor

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


33/33 .

Motivations
The ε0 and ε1 languages

Status and conclusion

Conclusion

Reductionism is a viable style of designing and implementing
practical programming languages, leading to solutions which
are easier to extend, experiment with and formally analyze.
Strong syntactic abstraction makes easy what is impossible in
other languages
Thanks to reflection we can build language tools as part of the
program
Performance doesn’t need to be bad

Thank you
.

— thanks to LIPN and Université Paris 13 as well, for
having supported me in this endeavor

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


34/33 .

A transform definition in (some) detail
Approximated tombstone diagrams

Backup slides

4 A transform definition in (some) detail
Add new expression cases, and their syntax
Define ordinary procedures
Install transform procedures

5 Approximated tombstone diagrams
Interpreters
Runtimes
Unexec

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


35/33 .

A transform definition in (some) detail
Approximated tombstone diagrams

Add new expression cases, and their syntax
Define ordinary procedures
Install transform procedures

Sample transform (1/5: add new expression cases)

(sum:extend-open e0:expression
(lambda handle formals body)
(call-closure handle closure-expression actuals))

;; Define "builder" procedures like for ε0 expression cases:
(e1:define (e1:lambda* formals body)

(e0:expression-lambda (e0:fresh-handle) formals body))
(e1:define (e1:call-closure* closure-expression actuals)

(e0:expression-call-closure (e0:fresh-handle)
closure-expression
actuals))

In case you’re wondering:
expressions are a sum type à-la-ML, open to new cases (like exn in
OCaml)

sum types definition and extension operators are macros...
ultimately just untyped memory structures: integers,
pointers to buffers

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


36/33 .

A transform definition in (some) detail
Approximated tombstone diagrams

Add new expression cases, and their syntax
Define ordinary procedures
Install transform procedures

Sample transform (2/5: add new expression case syntax)

The macro for our new forms will call the builder procedures at
macroexpansion time:

(e1:define-macro (e1:lambda formals . body-forms)
(sexpression:inject-expression

(e1:lambda* (sexpression:eject-symbols formals)
(e1:macroexpand ‘(e1:begin ,@body-forms)))))

(e1:define-macro (e1:call-closure closure-expression . actuals)
(sexpression:inject-expression

(e1:call-closure* (e1:macroexpand closure-expression)
(e1:macroexpand-sexpressions actuals))))

In case you’re wondering:

injection and ejection convert to and from s-expressions.

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


37/33 .

A transform definition in (some) detail
Approximated tombstone diagrams

Add new expression cases, and their syntax
Define ordinary procedures
Install transform procedures

Sample transform (3/5: ordinary recursive procedure)

(e1:define (closure-convert expression bound-variables)
(e1:match expression

((e0:variable x)
(e0:variable* x))

((e0:let let-variables bound-expression body)
(e0:let* let-variables

(closure-convert bound-expression
bound-variables)

(closure-convert body
(set:union bound-variables

let-variables))))
;; ... the actually interesting cases ...

))

In case you’re wondering:
e1:match is a macro (quite long, but no transforms are needed)
expressions are an ordinary sum type à-la-ML

sum types à-la-ML are defined with macros...

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


38/33 .

A transform definition in (some) detail
Approximated tombstone diagrams

Add new expression cases, and their syntax
Define ordinary procedures
Install transform procedures

Sample transform (4/5: transform procedures)

Again ordinary procedure definitions, with the good “types”.

(e1:define (closure-convert-expression expression)
(closure-convert expression set:empty))

(e1:define (closure-convert-procedure name formals body)
(e0:bundle name

formals
(closure-convert body

formals)))

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


39/33 .

A transform definition in (some) detail
Approximated tombstone diagrams

Add new expression cases, and their syntax
Define ordinary procedures
Install transform procedures

Sample transform (5/5: install)

(transform:prepend-expression-transform!
(e0:value closure-convert-expression))

(transform:prepend-procedure-transform!
(e0:value closure-convert-procedure))

From now on we can execute e1:lambda and e1:call-closure. .

.

In case you’re wondering:

Some transforms have to be applied retroactively (ex.: CPS)

transform:transform-retroactively!

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


40/33 .

A transform definition in (some) detail
Approximated tombstone diagrams

Interpreters
Runtimes
Unexec

Tombstone diagrams: interpreters

Bootstrap ε0 interpreter, ε0 interpreter in C: .

ε0

Guile

ε0

C

ε1 implementation:

ε1

ε0

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


41/33 .

A transform definition in (some) detail
Approximated tombstone diagrams

Interpreters
Runtimes
Unexec

Tombstone diagrams: runtimes

Guile runtime, efficient runtime:

dmp

Guile

dmp

C

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon


42/33 .

A transform definition in (some) detail
Approximated tombstone diagrams

Interpreters
Runtimes
Unexec

Tombstone diagrams: unexec

Unexec: ��
ε1

→ε0

��
ε1

dmpdmp

T
T
�
�
ε0

ε0

ε0

ε1 is built on top of ε0 by side effects, as a program. An interactive
REPL is also effectively a program.

Luca Saiu — positron@gnu.org GNU epsilon — savannah.gnu.org/bzr/?group=epsilon

savannah.gnu.org/bzr/?group=epsilon

	Motivations
	The "7122 0 and "7122 1 languages
	Status and conclusion
	Appendix
	A transform definition in (some) detail
	Approximated tombstone diagrams


